Updating search results...

Search Resources

68 Results

View
Selected filters:
  • Genetics
Stretching DNA (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore stretching just a single strand of DNA using optical tweezers or fluid flow. Experiment with the forces involved and measure the relationship between the stretched DNA length and the force required to keep it stretched. Is DNA more like a rope or like a spring?

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Meredith Betterton
Michael Dubson
Thomas Perkins
Wendy Adams
Date Added:
12/01/2007
Studying Evolution with Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe natural selection in action and investigate the underlying mechanism, including random mutation and differential fitness based on environmental characteristics. They do this through use of the free AVIDA-ED digital evolution software application.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Louise Mead
Robert Pennock
Wendy Johnson
Date Added:
09/18/2014
Survival of the Fittest: Competing Evolved & Engineered Digital Organisms
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engineer and evolve digital organisms with the challenge to produce organisms with the highest fitness values in a particular environment. They do this through use of the free Avida-ED digital evolution software application. The resulting organisms compete against each other in the same environment and students learn the benefits of applying the principles of natural selection to solve engineering design problems.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeff Farell
Wendy Johnson
Date Added:
09/18/2014
Tissue Specific Gene Expression
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How is it that all cells in our body have the same genes, yet cells in different tissues express different genes? A basic notion in biology that most high school students fail to conceptualize is the fact that all cells in the animal or human body contain the same DNA, yet different cells in different tissues express, on the one hand, a set of common genes, and on the other, express another set of genes that vary depending on the type of tissue and the stage of development. In this video lesson, the student will be reminded that genes in a cell/tissue are expressed when certain conditions in the nucleus are met. Interestingly, the system utilized by the cell to ensure tissue specific gene expression is rather simple. Among other factors - all discussed fully in the lesson - the cells make use of a tiny scaffold known as the “Nuclear Matrix or Nucleo-Skeleton”. This video lesson spans 20 minutes and provides 5 exercises for students to work out in groups and in consultation with their classroom teacher. The entire duration of the video demonstration and exercises should take about 45-50 minutes, or equivalent to one classroom session. There are no supplies needed for students’ participation in the provided exercises. They will only need their notebooks and pens. However, the teacher may wish to emulate the demonstrations used in the video lesson by the presenter and in this case simple material can be used as those used in the video. These include play dough, pencils, rubber bands (to construct the nuclear matrix model), a tennis ball and 2-3 Meters worth of shoe laces. The students should be aware of basic information about DNA folding in the nucleus, DNA replication, gene transcription, translation and protein synthesis.

Subject:
Biology
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Rabih Talhouk, Elia El-Habre
Date Added:
07/02/2021
Using DNA to Identify People
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

it would be ideal if students already have learned that DNA is the genetic material, and that DNA is made up of As, Ts, Gs, and Cs. It also would help if students already know that each human has two versions of every piece of DNA in their genome, one from mom and one from dad. The lesson will take about one class period, with roughly 30 minutes of footage and 30 minutes of activities.

Subject:
Biology
Career and Technical Education
Criminal Justice
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Megan E. Rokop
Date Added:
07/02/2021
What's Dominant?
Read the Fine Print
Educational Use
Rating
0.0 stars

In a class discussion format, the teacher presents background information about basic human genetics. The number of chromosomes in both body cells and egg and sperm cells is covered, as well as the concept of dominant and recessive alleles. Students determine whether or not they possess the dominant allele for the tongue-rolling gene as an example.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Who Robbed the Bank?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use DNA profiling to determine who robbed a bank. After they learn how the FBI's Combined DNA Index System (CODIS) is used to match crime scene DNA with tissue sample DNA, students use CODIS principles and sample DNA fragments to determine which of three suspects matches evidence obtain at a crime location. They communicate their results as if they were biomedical engineers reporting to a police crime scene investigation.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Frank Burkholder
Malinda Schaefer Zarske
Date Added:
10/14/2015
You Can’t Always Get What You Want: A Lesson in Human Evolution
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson introduces students to the concepts of evolution, specifically the evolution of humans. So often our students assume that humans are well adapted to our environments because we are in control of our evolutionary destiny. The goal is to change these types of misconceptions and get our students to link the concepts learned in their DNA, protein synthesis, and genetics units to their understanding of evolution. Students will also discover that humans are still evolving and learn about the traits that are more recent adaptations to our environment. The lesson is designed to take two one-hour class periods to complete. The activities will allow students to draw connections between environmental pressures and selected traits, both through data analysis and modeling. Most activities can be done without any special materials, although the Modeling Natural Selection activity needs either a tri-colored pasta, or tricolored beans, to be completed effectively.

Subject:
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Julie Boehm
Date Added:
07/02/2021