Updating search results...

Search Resources

508 Results

View
Selected filters:
  • Biology
Leaf Photosynthesis NetLogo Model
Read the Fine Print
Educational Use
Rating
0.0 stars

This Java-based NetLogo model allows students to investigate the chemical and energy inputs and outputs of photosynthesis through an interactive simulation. The simulation is a visual, conceptual model of photosynthesis and does not generate quantitative data. The central concept in the model is the role of chlorophyll in capturing light energy, and this concept is presented without delving into the biochemical details of the photosynthetic reactions. This allows students to focus on the core idea that photosynthesis transforms light energy into chemical energy. Along with exploring the basic process of photosynthesis, students can investigate the effects of light intensity, the day-night cycle (assuming the most common C3 photosynthetic pathway), CO2 concentration, and water availability on the rate of sugar production during photosynthesis. The model highlights the cycling within the chloroplasts between excited and unexcited states as energy is captured and released by chlorophyll. The lesson is written as an introductory learning experience, beginning with the question: What is needed for photosynthesis in a leaf, and what is produced? This resource is best suited as one in a series of learning experiences that either reinforce or extend the concepts addressed here. The model is embedded within an electronic form that provides instructions and guiding questions. Teachers and students should note that the electronic form does not save user data. An important limitation is that the model relies heavily on students’ visual perception, and this may pose a barrier for some students.

Subject:
Biology
Life Science
Material Type:
Simulation
Provider:
National Science Teachers Association (NSTA)
Provider Set:
NGSS@NSTA
Date Added:
07/07/2021
Life Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will extend their knowledge of matter and energy cycles in an organism to engineering life cycle assessment of a product. Students will learn about product life cycle assessment and the flow of energy through the cycle, comparing it to the flow of nutrients and energy in the life cycle of an organism.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
09/18/2014
Majors Animal [or Cellular or Plant] (BIOL 212)
Unrestricted Use
CC BY
Rating
0.0 stars

This is the second in a series of majoręs biology classes covering the principles of biology. The course is an integrated study of basic concepts concerning animal biology emphasizing animal evolution, diversity, phylogeny and a comparative look at general principles of animal form and function. This course is a lab science class and students will be required to participate in weekly lab activities and document their lab work for successful course completion.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Majors Animal [or Cellular or Plant] (BIOL 213)
Unrestricted Use
CC BY
Rating
0.0 stars

Biol & 213 is the third course of a year-long series of biology courses for Biology majors. The first third of the course surveys prokaryotes, protists, fungi, and plants, focusing on diversity, evolution, and life cycles from an evolutionary perspective. We will then describe plant anatomy, physiology, growth, responses to the environment, and reproduction, emphasizing flowering plants. We will finish with ecology, focusing on population, and community ecology and expanding outward to ecosystems and the introduction of biodiversity and conservation.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Majors Cellular [or Animal or Plant] (BIOL 211)
Unrestricted Use
CC BY
Rating
0.0 stars

This course is the first in a three-course sequence that introduces biology in preparation for advanced study in areas of biological science such as medicine, dentistry, cell biology, microbiology, or veterinary medicine. Biol& 211 introduces students to cellular structure and function. Major topics studied include: energy capture and utilization, cellular reproduction, inheritance, genetic mutation, protein synthesis, gene expression, and biotechnology.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Methods for Protein Purification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Protein Purification video lesson is intended to give students some insight into the process and tools that scientists and engineers use to explore proteins. It is designed to extend the knowledge of students who are already somewhat sophisticated and who have a good understanding of basic biology. The question that motivates this lesson is, ''what makes two cell types different?'' and this question is posed in several ways. Such scientific reasoning raises the experimental question: how could you study just a subset of specialized proteins that distinguish one cell type from another? Two techniques useful in this regard are considered in the lesson.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Natalie Kuldell, PhD
Date Added:
07/02/2021
Microbiology
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Microbiology covers the scope and sequence requirements for a single-semester microbiology course for non-majors. The book presents the core concepts of microbiology with a focus on applications for careers in allied health. The pedagogical features of the text make the material interesting and accessible while maintaining the career-application focus and scientific rigor inherent in the subject matter. Microbiology’s art program enhances students’ understanding of concepts through clear and effective illustrations, diagrams, and photographs.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Anh-Hue Thi Tu
Ann Auman
Ann Paterson
Ben Rowley
Brian M. Forster
Clifton Franklund
George Pinchuk
Graciela Brelles-Mariño
Mark Schneegurt
Mark Sutherland
Myriam Alhadeff Feldman
Nina Parker
Paul Flowers
Philip Lister
Summer Allen
Date Added:
11/02/2016
Microbiology: A Laboratory Experience
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As a group of organisms that are too small to see and best known for being agents of disease and death, microbes are not always appreciated for the numerous supportive and positive contributions they make to the living world. Designed to support a course in microbiology, Microbiology: A Laboratory Experience permits a glimpse into both the good and the bad in the microscopic world. The laboratory experiences are designed to engage and support student interest in microbiology as a topic, field of study, and career.

This text provides a series of laboratory exercises compatible with a one-semester undergraduate microbiology or bacteriology course with a three- or four-hour lab period that meets once or twice a week. The design of the lab manual conforms to the American Society for Microbiology curriculum guidelines and takes a ground-up approach — beginning with an introduction to biosafety and containment practices and how to work with biological hazards. From there the course moves to basic but essential microscopy skills, aseptic technique and culture methods, and builds to include more advanced lab techniques. The exercises incorporate a semester-long investigative laboratory project designed to promote the sense of discovery and encourage student engagement. The curriculum is rigorous but manageable for a single semester and incorporates best practices in biology education.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Textbook
Provider:
State University of New York
Provider Set:
Milne Open Textbooks
Author:
Holly Ahern
Date Added:
07/07/2021
Microbiology (BIOL 260)
Unrestricted Use
CC BY
Rating
0.0 stars

This on-line open source BIOL& 260 (Microbiology) is a health sciences oriented course in microbiology. It has a laboratory component and the labs are intended to be integrated throughout the course. BIOL& 260 is intended primarily for students going in to health-related professions and will emphasize the human disease and health related areas of microbiology. Areas of microbiology such as environmental, agricultural, taxonomy or astrobiology may be mentioned but not emphasized.

Subject:
Biology
Life Science
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
07/14/2021
Microbiology for Allied Health Students
Unrestricted Use
CC BY
Rating
0.0 stars

Microbiology for Allied Health Students is designed to cover the scope and sequence requirements for the single semester Microbiology course for non-majors and allied health students. The book presents the core concepts of microbiology with a focus on applications for careers in allied health. The pedagogical features of Microbiology for Allied Health Students make the material interesting and accessible to students while maintaining the career-application focus and scientific rigor inherent in the subject matter.

The scope and sequence of Microbiology for Allied Health Students has been developed and vetted with input from numerous instructors at institutions across the U.S. It is designed to meet the needs of most microbiology courses allied health students.

With these objectives in mind, the content of this textbook has been arranged in a logical progression from fundamental to more advanced concepts. The opening chapters present an overview of the discipline, with individual chapters focusing on cellular biology as well as each of the different types of microorganisms and the various means by which we can control and combat microbial growth. The focus turns to microbial pathogenicity, emphasizing how interactions between microbes and the human immune system contribute to human health and disease. The last several chapters of the text provide a survey of medical microbiology, presenting the characteristics of microbial diseases organized by body system.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Molly Smith
Sara Selby
Date Added:
07/07/2021
Molecular Biology, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. Topics covered in lecture and readings of relevant literature include: gene regulation, DNA replication, genetic recombination, and translation. Logic of experimental design and data analysis emphasized. Presentations include both lectures and group discussions of representative papers from the literature.

Subject:
Arts and Humanities
Biology
Life Science
Literature
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Baker, Tania
Bell, Stephen
Date Added:
01/01/2005
Molecular Biology for the Auditory System, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An introductory course in the molecular biology of the auditory system. First half focuses on human genetics and molecular biology, covering fundamentals of pedigree analysis, linkage analysis, molecular cloning, and gene analysis as well as ethical/legal issues, all in the context of an auditory disorder. Second half emphasizes molecular approaches to function and dysfunction of the cochlea, and is based on readings and discussion of research literature.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Skvorak Giersch, Anne B.
Date Added:
01/01/2002
Molecular, Cellular, and Tissue Biomechanics, Spring 2015
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course develops and applies scaling laws and the methods of continuum and statistical mechanics to biomechanical phenomena over a range of length scales, from molecular to cellular to tissue or organ level.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Prof. Alan Grodzinsky
Prof. Roger Kamm
Date Added:
01/01/2015
Molecular Structure of Biological Materials (BE.442), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular design of new biological materials for nanotechnology, biocomputing and regenerative medicine. Graduate students are expected to complete additional coursework. This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to give guest lectures.

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Molecular and Cellular Pathophysiology (BE.450), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This courses focuses on the fundamentals of tissue and organ response to injury from a molecular and cellular perspective. There is a special emphasis on disease states that bridge infection, inflammation, immunity, and cancer. The systems approach to pathophysiology includes lectures, critical evaluation of recent scientific papers, and student projects and presentations. This term, we focus on hepatocellular carcinoma (HCC), chronic-active hepatitis, and hepatitis virus infections. In addition to lectures, students work in teams to critically evaluate and present primary scientific papers.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schauer, David
Date Added:
01/01/2005
Monumental Movements
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn some of the implications of 3D printing in the biomedical field. Unlike 3D printers used in a classroom or by consumers, which use a plastic filament to produce a product, 3D printing for medical purposes is often with real living cells. In this lesson, students gain an understanding of how 3D printing is changing lives for the better through a presentation and group discussion. In the corresponding activity, they have the opportunity to participate in a hands-on simulation of a real-world 3D printing task.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Amanda Spotz
Date Added:
07/03/2019
Mutation Telephone
Read the Fine Print
Educational Use
Rating
0.0 stars

Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
07/07/2021
Mutations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about mutations to both DNA and chromosomes, and uncontrolled changes to the genetic code. They are introduced to small-scale mutations (substitutions, deletions and insertions) and large-scale mutations (deletion duplications, inversions, insertions, translocations and nondisjunctions). The effects of different mutations are studied as well as environmental factors that may increase the likelihood of mutations. A PowerPoint® presentation and pre/post-assessments are provided.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Kent Kurashima
Kimberly Anderson
Matthew Zelisko
Date Added:
07/07/2021