Updating search results...

Search Resources

73 Results

View
Selected filters:
  • kinetic-energy
Maximum Mentos Fountain
Read the Fine Print
Educational Use
Rating
0.0 stars

Students play the role of engineers as they test, design and build Mentos(TM) fountains a dramatic example of how potential energy (stored energy) can be converted to kinetic energy (motion). They are challenged to work together as a class to optimize the design of the basic soda/candy geyser made by the teacher. To do this, three research teams each investigate how a different variable nozzle shape, soda temperature, number of candies affects fountain height. They devise and run experimental tests to determine the best variable values. Then they combine their results to design the highest fountain to compete head-to-head with the teacher's geyser design.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
May the Force Be With You: Drag
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson explores the drag force on airplanes. The students will be introduced to the concept of conservation of energy and how it relates to drag. Students will explore the relationship between drag and the shape, speed and size of an object.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Measuring g
Read the Fine Print
Educational Use
Rating
0.0 stars

Using the LEGO MINDSTORMS(TM) NXT kit, students construct experiments to measure the time it takes a free falling body to travel a specified distance. Students use the touch sensor, rotational sensor, and the NXT brick to measure the time of flight for the falling object at different release heights. After the object is released from its holder and travels a specified distance, a touch sensor is triggered and time of object's descent from release to impact at touch sensor is recorded and displayed on the screen of the NXT. Students calculate the average velocity of the falling object from each point of release, and construct a graph of average velocity versus time. They also create a best fit line for the graph using spreadsheet software. Students use the slope of the best fit line to determine their experimental g value and compare this to the standard value of g.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer Haghpanah
Keeshan Williams
Nicole Abaid
Date Added:
09/18/2014
Mouse Trap Racing in the Computer Age!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design, build and evaluate a spring-powered mouse trap racer. For evaluation, teams equip their racers with an intelligent brick from a LEGO© MINDSTORMS© NXT Education Base Set and a HiTechnic© acceleration sensor. They use acceleration data collected during the launch to compute velocity and displacement vs. time graphs. In the process, students learn about the importance of fitting mathematical models to measurements of physical quantities, reinforce their knowledge of Newtonian mechanics, deal with design compromises, learn about data acquisition and logging, and carry out collaborative assessment of results from all participating teams.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pavel Khazron
Date Added:
09/18/2014
Move It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dan Choi
Randall Evans
Date Added:
09/18/2014
The Mystery of Motion: Momentum, Kinetic Energy and Their Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video lesson, the concept of momentum applied to hard-body collisions is explained using a number of simple demonstrations, all of which can be repeated in the classroom. Understanding Newton's Laws is fundamental to all of physics, and this lesson introduces the vital concepts of momentum and energy, and their conservation. Only some preliminary ideas of algebra are used here, and all the concepts presented can be found in any high-school level physics book. In terms of materials required, getting hold of large steel balls may not be easy, but large ball bearings can be procured easily. On the basis of what students have learned in the video, teachers can easily generate a large number of questions that relate to one's daily experiences, or which pose new challenges: for example, in a collision between a heavy and light vehicle, why do those inside the lighter one suffer less injury?

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Hoodbhoy
Date Added:
07/02/2021
Naked Egg Drop
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation of energy. Acting as engineering teams, during the activity and competition they are responsible for design and construction planning within project constraints, including making engineering modifications for improvement. They carefully consider material choices to balance potentially competing requirements (such as impact-absorbing and low-cost) in the design of their prototypes. They also experience a real-world transfer of energy as the elevated egg's gravitational potential energy turns into kinetic energy as it falls and further dissipates into other forms upon impact. Pre- and post-activity assessments and a scoring rubric are provided. The activity scales up to district or regional egg drop competition scale. As an alternative to a ladder, detailed instructions are provided for creating a 10-foot-tall egg dropper rig.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Jabusch
Date Added:
10/14/2015
Off the Grid (Lesson)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
09/18/2014
Physics of Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
09/18/2014
Power, Work and the Waterwheel
Read the Fine Print
Educational Use
Rating
0.0 stars

Waterwheels are devices that generate power and do work. Student teams construct waterwheels using two-liter plastic bottles, dowel rods and index cards, and calculate the power created and work done by them.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Power Your House with Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Student teams work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Power Your House with Wind
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadvantages to using wind power compared to other non-renewable energy sources.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
The Puck Stops Here
Read the Fine Print
Educational Use
Rating
0.0 stars

After learning about the concept of transfer of energy, specifically the loss of kinetic energy to friction, students get a chance to test friction. Student groups are each given a wooden block and different fabrics and weights and challenged to design the "best" puck. First the class defines what makes the "best" puck. They come to realize that the most desirable puck is the one that travels the farthest, thus the puck with the least amount of friction. In the context of hockey, the "best" puck is the one that travels farthest and loses the least kinetic energy to friction. Students then apply their knowledge of friction the energy transfer from kinetic to heat energy to design new, optimal pucks for the National Hockey League.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anne Vanderschueren
Greg Larkin
Date Added:
10/14/2015
Pushing It Off a Cliff
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson focuses on the conservation of energy solely between gravitational potential energy and kinetic energy, moving students into the Research and Revise step. Students start out with a virtual laboratory, and then move into the notes and working of problems as a group. A few questions are given as homework. A dry lab focuses on the kinetic and potential energies found on a roller coaster concludes the lesson in the Test Your Mettle phase of the Legacy Cycle.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joel Daniel
Date Added:
09/18/2014
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Ramp
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
10/05/2006
Ramp and Review
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ramp and Review (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables and review the relationships between these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Sprague
Chris Yakacki
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ready, Set, Escape
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are asked to design simple yet accurate timing devices using limited supplies. The challenge is to create a device that measures out a time period of exactly three minutes in order to enable a hypothetical prison escape. Student groups brainstorm ideas using the different materials provided. They observe and explain the effects of conservation of energy.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Renewable Energy Design: Wind Turbines
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to renewable energy, including its relevance and importance to our current and future world. They learn the mechanics of how wind turbines convert wind energy into electrical energy and the concepts of lift and drag. Then they apply real-world technical tools and techniques to design their own aerodynamic wind turbines that efficiently harvest the most wind energy. Specifically, teams each design a wind turbine propeller attachment. They sketch rotor blade ideas, create CAD drawings (using Google SketchUp) of the best designs and make them come to life by fabricating them on a 3D printer. They attach, test and analyze different versions and/or configurations using a LEGO wind turbine, fan and an energy meter. At activity end, students discuss their results and the most successful designs, the aerodynamics characteristics affecting a wind turbine's ability to efficiently harvest wind energy, and ideas for improvement. The activity is suitable for a class/team competition. Example 3D rotor blade designs are provided.

Subject:
Career and Technical Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
AMPS
Gisselle Cunningham
Lindrick Outerbridge
Russell Holstein
Date Added:
07/07/2021