Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
This activity aims to teach students about the different layers of the …
This activity aims to teach students about the different layers of the atmosphere. It also aims to teach them which part of our atmosphere is considered outer space and what phenomena occur in each layer.
Light pollution affects the visibility of stars. Building a simple Magnitude Reader, …
Light pollution affects the visibility of stars. Building a simple Magnitude Reader, students determine the magnitude of stars and learn about limiting magnitude.
Students will study through investigation the effects of light pollution on night …
Students will study through investigation the effects of light pollution on night sky observation. They will share their results and suggest improvement within the community.
The students will learn about recent meteor strikes and the effects they …
The students will learn about recent meteor strikes and the effects they can have. They will then examine their significance in the history of the planet, and what they do to the surface of a planet when forming a crater. The students will then experimentally determine how the size and impact velocity of a meteorite determine the size of the crater.
Students use scaling from real-world data to obtain an idea of the …
Students use scaling from real-world data to obtain an idea of the immense size of Mars in relation to the Earth and the Moon, as well as the distances between them. Students calculate dimensions of the scaled versions of the planets, and then use balloons to represent their relative sizes and locations.
This course provides an introduction to the universe beyond the Earth. We …
This course provides an introduction to the universe beyond the Earth. We begin with a study of the night sky and the history of the science of astronomy. We then explore the various objects seen in the cosmos including the solar system, stars, galaxies, and the evolution of the universe itself. As an online course, it is equivalent to 6 lecture hours, and satisfies science requirements for the AA and AS degree. It is designed to be thorough enough to prepare you for more advanced work, while presenting the concepts to non-majors in a way that is meaningful and not overwhelming. We will consider the course a success if you have learned how to think about the universe critically in an organized, logical way, and to have enhanced your appreciation of the sky around us.
The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures …
The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new science and mathematics.
This course includes Quantitative introduction to physics of the solar system, stars, …
This course includes Quantitative introduction to physics of the solar system, stars, interstellar medium, the Galaxy, and Universe, as determined from a variety of astronomical observations and models. Topics: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis. No prior knowledge of astronomy necessary. Not usable as a restricted elective by physics majors.
This is a hands-on activity to learn that energy can be transformed …
This is a hands-on activity to learn that energy can be transformed into various forms. Potential energy is converted into kinetic energy. Moreover, this kinetic energy can be used (if more than the relative binding energy) to break atoms, particles and molecules to see “inside” and to study their constituents.
This book is a journey through the world of physics and cosmology, …
This book is a journey through the world of physics and cosmology, and an exploration of our role in this universe. We will address questions such as: What if the force of gravity were a little stronger? What if there were more of fewer atoms in our universe? What if Newton and not Einstein had been right? Would we still be here? Can the universe exist without us to observe it? Can chance explain the world around us, as well as us?
The purpose of this book is to phrase these questions and pursue the consequences of potential answers through rigorous scientific reasoning; in the process we will learn how the very small and the very large are interconnected, and even how we can affect events that happened six billion years ago.
Licensed CC-BY-4.0 with attribution instructions on page 2 of the document.
Table of Contents
Introduction 7 The fundamental forces 10 The force of gravity 18 What if … the force of gravity were different? 23 The electric and magnetic forces 26 The electric force 27 What if … the electric force were different? 39 The magnetic force 48 What if … the magnetic force were different? 58 The strong and weak forces 59 What if … ? 65 How do forces work? 74 The history of the universe 85 What if … ? 94 The history of our species 106 Odds 124 The building blocks of the universe 128 What if … ? 140 Dark energy 150 What if … dark matter were more interesting? 159 When you do not look…. 162 Manifestations of the wave nature of matter 169 The delayed choice experiment: Affecting the past 186 What if … ? 191 The story so far 195 Unification and our role 199 Fine-tuning? 214 The Multiverse and aliens 226 The laws of physics 234 The Anthropic Principle and Puddle Theory 237 Post mortem 249 Further reading and chapter notes 251
Students are introduced to the International Space Station (ISS) with information about …
Students are introduced to the International Space Station (ISS) with information about its structure, operation and key experiments. The ISS itself is an experiment in international cooperation to explore the potential for humans to live in space. The space station features state-of-the-art science and engineering laboratories to conduct research in medicine, materials and fundamental science to benefit people on Earth as well as people who will live in space in the future.
Students groups act as aerospace engineering teams competing to create linear equations …
Students groups act as aerospace engineering teams competing to create linear equations to guide space shuttles safely through obstacles generated by a modeling game in level-based rounds. Each round provides a different configuration of the obstacle, which consists of two "gates." The obstacles are presented as asteroids or comets, and the linear equations as inputs into autopilot on board the shuttle. The winning group is the one that first generates the successful equations for all levels. The game is created via the programming software MATLAB, available as a free 30-day trial. The activity helps students make the connection between graphs and the real world. In this activity, they can see the path of a space shuttle modeled by a linear equation, as if they were looking from above.
Two children act as the Moon and the Earth. By holding hands …
Two children act as the Moon and the Earth. By holding hands and spinning around they mimic the tidal locking of the Moon. They note that the Moon always keeps the same face towards Earth.
Can you avoid the boulder field and land safely, just before your …
Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.
Can you avoid the boulder field and land safely, just before your …
Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.
In this 30 to 45 minute activity, children (in teams of 4-5) …
In this 30 to 45 minute activity, children (in teams of 4-5) experiment to create craters and learn about the landscape of the moon. The children make observations on how the size and mass, direction, and velocity of the projectile impacts the size and shape of the crater.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.