Updating search results...

Search Resources

733 Results

View
Selected filters:
  • Physics
Kinetic Processes in Materials, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Unified treatment of phenomenological and atomistic kinetic processes in materials. Provides the foundation for the advanced understanding of processing, microstructural evolution, and behavior for a broad spectrum of materials. Emphasis on analysis and development of rigorous comprehension of fundamentals. Topics include: irreversible thermodynamics; diffusion; nucleation; phase transformations; fluid and heat transport; morphological instabilities; gas-solid, liquid-solid, and solid-solid reactions.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Allen, Samuel
Date Added:
01/01/2006
Kinetic and Potential Energy of Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to both potential energy and kinetic energy as forms of mechanical energy. A hands-on activity demonstrates how potential energy can change into kinetic energy by swinging a pendulum, illustrating the concept of conservation of energy. Students calculate the potential energy of the pendulum and predict how fast it will travel knowing that the potential energy will convert into kinetic energy. They verify their predictions by measuring the speed of the pendulum.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Kite Flying: Fun, Art and Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson presents the basics of aerodynamics by using kite flying as an example, i.e., forces acting on a flying object. Students will measure the net force acting on a kite due to blowing air and will learn how a simple instrument like a spring can be used to measure such force. They will also examine and experience how the force on the kite is transferred to the string in the form of tension and will again measure that tension with a simple spring. This lesson will take about 30 minutes to complete. One will need a calibrated spring to measure forces, as well as a few springs to study the coplanar forces.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Date Added:
07/02/2021
A LEGO Introduction to Graphing
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a LEGO® ball shooter to demonstrate and analyze the motion of a projectile through use of a line graph. This activity involves using a method of data organization and trend observation with respect to dynamic experimentation with a complex machine. Also, the topic of line data graphing is covered. The main objective is to introduce students graphs in terms of observing and demonstrating their usefulness in scientific and engineering inquiries. During the activity, students point out trends in the data and the overall relationship that can be deduced from plotting data derived from test trials with the ball shooter.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Vikram Kapila
Zachary Nishino
Date Added:
09/18/2014
Lab Research to Engineer a Phosphorescent Bioplastic
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain first-hand experience with the steps of the scientific method as well as the overarching engineering design process as they conduct lab research with the aim to create a bioplastic with certain properties. Students learn about the light mechanism that causes ultraviolet bead color change, observe the effect of different light waves on a phosphorescence powder, and see the connection between florescence, phosphorescence and wavelength. Students compose hypotheses and determine experimental procedure details, as teams engineer variations on a bioplastic solid embedded with phosphorescence powder. The objective is to make a structurally sound bioplastic without reducing its glowing properties from the powder embedded within its matrix. Groups conduct qualitative and quantitative analyses of their engineered plastics, then recap and communicate their experiment conclusions in the form of a poster, slides and verbal presentation. As an extension, teams make their own testing apparatuses. As a further extension, they combine all the group results to determine which bioplastic matrix best achieves the desired properties and then “manufacture” the optimum bioplastic into glowing toy figurine end products! Many handouts, instructions, photos and rubrics are provided.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jamie Sorrell
Michael Hipp
Date Added:
09/23/2017
Ladybug Motion 2D
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Noah Podolefsky
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
04/01/2009
Ladybug Revolution
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/28/2008
Ladybug Revolution (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
08/02/2011
Land! Water! Sky! Oh My!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson focuses on the importance of airplanes in today's society. Airplanes of all shapes and sizes are used for hundreds of different reasons, including recreation, commercial business, public transportation, and delivery of goods, among many others. From transporting people to crop-dusting, our society and our economy have come to depend on airplanes. Students will discuss their own experiences with airplanes and learn more about the role of airplanes in our world.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
09/18/2014
Laser Types and Uses
Read the Fine Print
Educational Use
Rating
0.0 stars

Through two classroom demos, students are introduced to the basic properties of lasers through various mediums. In the Making an Electric Pickle demonstration, students see how cellular tissue is able to conduct electricity, and how this is related to various soaking solutions. In the Red/Green Lasers through Different Mediums demonstration, students see the properties of lasers, especially diffraction, in various mediums. Follow-up lecture material introduces students to the mechanisms by which lasers function and relates these functions to the properties of light. In the associated activity, student teams research specific laser types and present their findings to the class.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Lasers, Let's Find 'Em!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students research particular types of lasers and find examples of how they are used in technology today. Teams present their findings by means of PowerPoint presentations, videos or brochures. The class takes notes on the presentations using a provided handout. This activity prepares students for the "go public" phase of the legacy cycle in which they solve the grand challenge by designing and producing a laser-based security system.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Terry Carter
Date Added:
09/18/2014
Latex Tubing and Hybrid Vehicles
Read the Fine Print
Educational Use
Rating
0.0 stars

The learning of linear functions is pervasive in most algebra classrooms. Linear functions are vital in laying the foundation for understanding the concept of modeling. This unit gives students the opportunity to make use of linear models in order to make predictions based on real-world data, and see how engineers address incredible and important design challenges through the use of linear modeling. Student groups act as engineering teams by conducting experiments to collect data and model the relationship between the wall thickness of the latex tubes and their corresponding strength under pressure (to the point of explosion). Students learn to graph variables with linear relationships and use collected data from their designed experiment to make important decisions regarding the feasibility of hydraulic systems in hybrid vehicles and the necessary tube size to make it viable.

Subject:
Applied Science
Engineering
Functions
Mathematics
Physical Science
Physics
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Erik Bowen
Date Added:
09/18/2014
Launch into Learning: Catapults!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about catapults, including the science and math concepts behind them, as they prepare for the associated activity in which they design, build and test their own catapults. They learn about force, accuracy, precision and angles.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jake Crosby
Jonathan McNeil
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Learning Light's Properties
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basic properties of light the concepts of light absorption, transmission, reflection and refraction, as well as the behavior of light during interference. Lecture information briefly addresses the electromagnetic spectrum and then provides more in-depth information on visible light. With this knowledge, students better understand lasers and are better prepared to design a security system for the mummified troll.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Let's Get Breezy!
Read the Fine Print
Educational Use
Rating
0.0 stars

With the assistance of a few teacher demonstrations (online animation, using a radiometer and rubbing hands), students review the concept of heat transfer through convection, conduction and radiation. Then they apply an understanding of these ideas as they use wireless temperature probes to investigate the heating capacity of different materials sand and water under heat lamps (or outside in full sunshine). The experiment models how radiant energy drives convection within the atmosphere and oceans, thus producing winds and weather conditions, while giving students the hands-on opportunity to understand the value of remote-sensing capabilities designed by engineers. Students collect and record temperature data on how fast sand and water heat and cool. Then they create multi-line graphs to display and compare their data, and discuss the need for efficient and reliable engineer-designed tools like wireless sensors in real-world applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Constance Garza
Mounir Ben Ghalia
Date Added:
10/14/2015
Levers that Lift
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to three of the six simple machines used by many engineers: the lever, the pulley, and the wheel-and-axle. In general, engineers use the lever to magnify the force applied to an object, the pulley to lift heavy loads over a vertical path, and the wheel-and-axle to magnify the torque applied to an object. The mechanical advantage of these machines helps determine their ability to make work easier or make work faster.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jake Lewis
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Life and the Universe: What if …?
Unrestricted Use
CC BY
Rating
0.0 stars

This book is a journey through the world of physics and cosmology, and an exploration of our role in this universe. We will address questions such as: What if the force of gravity were a little stronger? What if there were more of fewer atoms in our universe? What if Newton and not Einstein had been right? Would we still be here? Can the universe exist without us to observe it? Can chance explain the world around us, as well as us?

The purpose of this book is to phrase these questions and pursue the consequences of potential answers through rigorous scientific reasoning; in the process we will learn how the very small and the very large are interconnected, and even how we can affect events that happened six billion years ago.

Licensed CC-BY-4.0 with attribution instructions on page 2 of the document.

Table of Contents

Introduction 7
The fundamental forces 10
The force of gravity 18
What if … the force of gravity were different? 23
The electric and magnetic forces 26
The electric force 27
What if … the electric force were different? 39
The magnetic force 48
What if … the magnetic force were different? 58
The strong and weak forces 59
What if … ? 65
How do forces work? 74
The history of the universe 85
What if … ? 94
The history of our species 106
Odds 124
The building blocks of the universe 128
What if … ? 140
Dark energy 150
What if … dark matter were more interesting? 159
When you do not look…. 162
Manifestations of the wave nature of matter 169
The delayed choice experiment: Affecting the past 186
What if … ? 191
The story so far 195
Unification and our role 199
Fine-tuning? 214
The Multiverse and aliens 226
The laws of physics 234
The Anthropic Principle and Puddle Theory 237
Post mortem 249
Further reading and chapter notes 251

Subject:
Astronomy
Physical Science
Physics
Material Type:
Textbook
Author:
Lanika Ruzhitskaya
Wouter Montfrooij
Date Added:
01/01/2018
Lifter (EHD Thrusters)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students teams each assemble a wing component of a lifter with the goal to test the lifter wing and measure the force exerted when high voltage is applied to it. After an introduction to torque and its use to measure force, students calculate the change in the torque when a high voltage is applied to the wing portion of the lifter using a fulcrum. Once a group has assembled its wing portion, the teacher tests it with a high-voltage power supply, marking the change in the balance so that students can calculate the force. Then groups adjust the gap between the electrodes and re-measure the force. Groups each repeat this process three times, which allows students to estimate the magnitude of the force as a function of the gap between the electrodes.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014