Updating search results...

Search Resources

8345 Results

View
Selected filters:
  • <emphasis-effect="italics">laissez-faire</emphasis>
Electric Field of Dreams
Unrestricted Use
CC BY
Rating
0.0 stars

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude. (Kevin Costner not included).

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/16/2007
Electric Machines, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Treatment of electromechanical transducers, rotating and linear electric machines. Lumped-parameter electromechanics of interaction. Development of device characteristics: energy conversion density, efficiency; and of system interaction characteristics: regulation, stability, controllability, and response. Use of electric machines in drive systems. Problems taken from current research. This course explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
James Kirtley
Date Added:
01/01/2013
Electrical Power Drives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

After this course the student can:
Understand mechanical system requirements for Electric Drive
Understand and apply passive network elements (R, L, C), laws of Kirchhof, Lorentz, Faraday
Understand and apply: phasors for simple R,L,C circuits
Understand and apply real and reactive power, rms, active and reactive current, cos phi
Describe direct current (DC), (single phase) alternating current (AC) and (three phase) alternating current systems, star-delta connection
Understand the principle of switch mode power electronic converters, pole as a two quadrant and four quadrant converter
Understand principles of magnetic circuits, inductances and transformers

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Assessment
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. P. Bauer
Date Added:
02/03/2016
Electrical machines and drives
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course gives an overview of different types of electrical machines and drives. Different types of mechanica loads are discussed. Maxwell's equations are applied to magnetic circuits including permanent magnets. DC machines, induction machines, synchronous machines, switched reluctance machines, brushless DC machines and single-phase machines are discussed with the power electronic converters used to drive them.Study Goals After following this course the students should have an overview over the different types of electrical machines and the way they are used in drive systems and they should be able to derive equations describing the steady-state performance of these machines

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H. Polinder
Date Added:
02/08/2016
The Electric and Magnetic Personalities of Mr. Maxwell
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are briefly introduced to Maxwell's equations and their significance to phenomena associated with electricity and magnetism. Basic concepts such as current, electricity and field lines are covered and reinforced. Through multiple topics and activities, students see how electricity and magnetism are interrelated.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Electricity and Gas: Market Design and Policy Issues
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

European gas and electricity markets have largely been liberalized. Due to the specific physical characteristics and public interest aspects of electricity and gas, and to the fact that the networks continue to be natural monopolies, these markets require careful design. In this class, it is analyzed what the market design variables are and how the ongoing process of market design depends on policy goals, starting conditions and physical, technical and institutional constraints. In addition, a number of current policy issues will be discussed, such as security of supply, the CO2 emissions market, the integration of European energy markets and privatization. Participation in a simulation game, in which long-term market dynamics are simulated, is mandatory.

Subject:
Economics
Social Science
Material Type:
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. L.J. de Vries
Date Added:
02/12/2016
Electricity and Magnetic Fields
Read the Fine Print
Educational Use
Rating
0.0 stars

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Justin Montenegro
Date Added:
09/18/2014
Electricity and Magnetism, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This freshman-level course is the second semester of introductory physics. The focus is on electricity and magnetism The subject is taught using the TEAL (Technology Enabled Active Learning) format which utilizes small group interaction and current technology. The TEAL/Studio Project at MIT is a new approach to physics education designed to help students develop much better intuition about, and conceptual models of, physical phenomena.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
John Belcher
Date Added:
05/17/2004
Electrifying America
Unrestricted Use
CC BY
Rating
0.0 stars

This collection uses primary sources to explore the introduction of electric power to the United States. Digital Public Library of America Primary Source Sets are designed to help students develop their critical thinking skills and draw diverse material from libraries, archives, and museums across the United States. Each set includes an overview, ten to fifteen primary sources, links to related resources, and a teaching guide. These sets were created and reviewed by the teachers on the DPLA's Education Advisory Committee.

Subject:
History
U.S. History
Material Type:
Primary Source
Provider:
Digital Public Library of America
Provider Set:
Primary Source Sets
Author:
Hillary Brady
Date Added:
01/20/2016
Electrifying the World
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the fundamental concepts of electricity. This is accomplished by addressing questions such as "How is electricity generated," and "How is it used in every-day life?" The lesson also includes illustrative examples of circuit diagrams to help explain how electricity flows.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Lin
Date Added:
09/18/2014
Electrocardiograph Building
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on concepts taught in the associated lesson, students learn about bioelectricity, electrical circuits and biology as they use deductive and analytical thinking skills in connection with an engineering education. Students interact with a rudimentary electrocardiograph circuit (made by the teacher) and examine the simplicity of the device. They get to see their own cardiac signals and test the device themselves. During the second part of the activity, a series of worksheets, students examine different EKG print-outs and look for irregularities, as is done for heart disease detection.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
James Crawford
Katherine Murray
Leyf Peirce
Mark Remaly
Shayn Peirce
Date Added:
09/18/2014
Electrochemical Energy Systems, Spring 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces principles and mathematical models of electrochemical energy conversion and storage. Students study equivalent circuits, thermodynamics, reaction kinetics, transport phenomena, electrostatics, porous media, and phase transformations. In addition, this course includes applications to batteries, fuel cells, supercapacitors, and electrokinetics.

Subject:
Applied Science
Career and Technical Education
Chemistry
Electronic Technology
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bazant, Martin
Date Added:
01/01/2011
Electrochemical Processing of Materials, Spring 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Thermodynamic and transport properties of aqueous and nonaqueous electrolytes. The electrode/electrolyte interface. Kinetics of electrode processes. Electro-chemical characterization: d.c. techniques (controlled potential, controlled current), a.c. techniques (voltametry and impedance spectroscopy). Applications: electrowinning, electrorefining, electroplating, and electrosynthesis, as well as electrochemical power sources (batteries and fuel cells). This course covers a variety of topics concerning superconducting magnets, including thermodynamic and transport properties of aqueous and nonaqueous electrolytes, the electrode/electrolyte interface, and the kinetics of electrode processes. It also covers electrochemical characterization with regards to d.c. techniques (controlled potential, controlled current) and a.c. techniques (voltametry and impedance spectroscopy). Applications of the following will also be discussed: electrowinning, electrorefining, electroplating, and electrosynthesis, as well as electrochemical power sources (batteries and fuel cells).

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sadoway, Donald
Date Added:
01/01/2001
Electrochemistry: Electroplating
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this lesson is to introduce the concepts of Electrochemistry and Electroplating and to present their applications in our daily lives. Students are encouraged to construct their knowledge of Electroplating through brainstorming sessions, experiments and discussions. This video lesson presents a series of stories related to Electroplating and begins with a story about house gates as an example of the common items related to the Electroplating topic. Prerequisites for this lesson are knowledge of the basic concepts of electrolysis and chemical equations. The lesson will take about 60 minutes to complete, but you may want to divide the lesson into two classes if the activities require more time.

Subject:
Chemistry
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Hafizah Binti Nasir, Mohd Fared Bin Samin
Date Added:
07/02/2021
Electromagnetic Energy: From Motors to Lasers, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses applications of electromagnetic and equivalent quantum mechanical principles to classical and modern devices. It covers energy conversion and power flow in both macroscopic and quantum-scale electrical and electromechanical systems, including electric motors and generators, electric circuit elements, quantum tunneling structures and instruments. It studies photons as waves and particles and their interaction with matter in optoelectronic devices, including solar cells, displays, and lasers. The instructors would like to thank Scott Bradley, David Friend, Ta-Ming Shih, and Yasuhiro Shirasaki for helping to develop the course, and Kyle Hounsell, Ethan Koether, and Dmitri Megretski for their work preparing the lecture notes for OCW publication.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jeffrey H. Lang
Rajeev Ram
Steven Leeb
Vladimir Bulovic
Yu Gu
Date Added:
01/01/2011
Electromagnetic Field Theory: A Problem Solving Approach, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This text is an introductory treatment on the junior level for a two-semester electrical engineering course starting from the Coulomb-Lorentz force law on a point charge. The theory is extended by the continuous superposition of solutions from previously developed simpler problems leading to the general integral and differential field laws. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear. Sample problems and their solutions are presented for each new concept with great emphasis placed on classical models of physical phenomena such as polarization, conduction, and magnetization. A large variety of related problems that reinforce the text material are included at the end of each chapter for exercise and homework.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Fields, Forces, and Motion, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course examines electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Topics covered include: electromagnetic forces, force densities, and stress tensors, including magnetization and polarization; thermodynamics of electromagnetic fields, equations of motion, and energy conservation; applications to synchronous, induction, and commutator machines; sensors and transducers; microelectromechanical systems; propagation and stability of electromechanical waves; and charge transport phenomena. Acknowledgments The instructor would like to thank Thomas Larsen and Matthew Pegler for transcribing into LaTeX the homework problems, homework solutions, and exam solutions.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zahn, Markus
Date Added:
01/01/2009
Electromagnetic Fields and Energy, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Published in 1989 by Prentice-Hall, this book is a useful resource for educators and self-learners alike. The text is aimed at those who have seen Maxwell's equations in integral and differential form and who have been exposed to some integral theorems and differential operators. A hypertext version of this textbook can be found here. An accompanying set of video demonstrations is available below. These video demonstrations convey electromagnetism concepts. The demonstrations are related to topics covered in the textbook. They were prepared by Markus Zahn, James R. Melcher, and Manuel L. Silva and were produced by the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology. The purpose of these demonstrations is to make mathematical analysis of electromagnetism take on physical meaning. Based on relatively simple configurations and arrangements of equipment, they make a direct connection between what has been analytically derived and what is observed. They permit the student to observe physically what has been described symbolically. Often presented with a plot of theoretical predictions that are compared to measured data, these demonstrations give the opportunity to test the range of validity of the theory and present a quantitative approach to dealing with the physical world. The short form of these videos contains the demonstrations only. The long form also presents theory, diagrams, and calculations in support of the demonstrations. These videos are used in the courses 6.013J/ESD.013J and 6.641. Technical Requirements:Special software is required to use some of the files in this course: .mp4, .rm.

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Interactions, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisons with charged particles and atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects. This course is a graduate level subject on electromagnetic theory with particular emphasis on basics and applications to Nuclear Science and Engineering. The basic topics covered include electrostatics, magnetostatics, and electromagnetic radiation. The applications include transmission lines, waveguides, antennas, scattering, shielding, charged particle collisions, Bremsstrahlung radiation, and Cerenkov radiation.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Freidberg, Jeffrey
Date Added:
01/01/2005