Laboratory or field work in atmospheric science and oceanography. To be arranged …
Laboratory or field work in atmospheric science and oceanography. To be arranged with department faculty. Consult with department Education Office. This is an undergraduate introductory laboratory subject in ocean chemistry and measurement. There are three main elements to the course: oceanic chemical sampling and analysis, instrumentation development for the ocean environment, and the larger field of ocean science. This course is offered as part of the MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering.
This course uses an open textbook University of Michigan Chemical Engineering Process …
This course uses an open textbook University of Michigan Chemical Engineering Process Dynamics and Controls. The articles in the open textbook (wikibook) are all written by teams of 3-4 senior chemical engineering students, and are peer-reviewed by other members of the class. Using this approach, the faculty and Graduate Student Instructors (GSIs) teaching the course act as managing editors, selecting broad threads for the text and suggesting references. In contrast to other courses, the students take an active role in their education by selecting which material in their assigned section is most useful and decide on the presentation approach. Furthermore, students create example problems that they present in poster sessions during class to help the other students master the material.
Students are introduced to chemical engineering and learn about its many different …
Students are introduced to chemical engineering and learn about its many different applications. They are provided with a basic introduction to matter and its different properties and states. An associated hands-on activity gives students a chance to test their knowledge of the states of matter and how to make observations using their five senses: touch, smell, sound, sight and taste.
Chemistry is designed to meet the scope and sequence requirements of the …
Chemistry is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning.
Chemistry is the scientific study of matter and its interaction with other …
Chemistry is the scientific study of matter and its interaction with other matter and with energy. It is the branch of natural science that deals with the composition of substances and their properties and reactions.
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through …
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association.
This title is an adaptation of the OpenStax Chemistry text and covers scope and sequence requirements of the two-semester general chemistry course. Reordered to fit an atoms first approach, this title introduces atomic and molecular structure much earlier than the traditional approach, delaying the introduction of more abstract material so students have time to acclimate to the study of chemistry. Chemistry: Atoms First also provides a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course.
This course is an intensive introduction to the techniques of experimental chemistry …
This course is an intensive introduction to the techniques of experimental chemistry and gives first year students an opportunity to learn and master the basic chemistry lab techniques for carrying out experiments. Students who successfully complete the course and obtain a "Competent Chemist" (CC) or "Expert Experimentalist" (EE) rating are likely to secure opportunities for research work in a chemistry lab at MIT. Acknowledgements The laboratory manual and materials for this course were prepared by Dr. Katherine J. Franz and Dr. Kevin M. Shea with the assistance of Professors Rick L. Danheiser and Timothy M. Swager. Materials have been revised by Dr. J. Haseltine, Dr. Kevin M. Shea, Dr. Sarah A. Tabacco, Dr. Kimberly L. Berkowski, Anne M. (Gorham) Rachupka, and Dr. John J. Dolhun. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice
People around the world are fascinated about the preparation of food for …
People around the world are fascinated about the preparation of food for eating. There are countless cooking books, TV shows, celebrity chefs and kitchen gadgets that make cooking an enjoyable activity for everyone. The chemistry of cooking course seeks to understand the science behind our most popular meals by studying the behavior of atoms and molecules present in food. This book is intended to give students a basic understanding of the chemistry involved in cooking such as caramelization, Maillard reaction, acid-base reactions, catalysis, and fermentation. Students will be able to use chemistry language to describe the process of cooking, apply chemistry knowledge to solve questions related to food, and ultimately create their own recipes.
This seminar will focus on three sports: swimming, cycling and running. There …
This seminar will focus on three sports: swimming, cycling and running. There will be two components to the seminar: classroom sessions and a "laboratory" in the form of a structured training program. The classroom component will introduce the students to the chemistry of their own biological system. With swimming, running and cycling as sample sports, students are encouraged to apply their knowledge to complete a triathlon shortly after the term.
Student groups are given captioned photographs of the Chernobyl Nuclear Power Plant …
Student groups are given captioned photographs of the Chernobyl Nuclear Power Plant facility and surrounding towns taken before and 28 years after the 1986 disaster. Based on the captions and clues in the images, they arrange them in sequential order. While viewing the completed sequence of images, students reflect on what it might have been like to be there, and ask themselves: what were people thinking, doing and saying at each point? This activity assists students in gaining an understanding of how devastating nuclear meltdowns can be, which underscores the importance of responsible engineering. It is recommended that this activity be conducted before the associated lesson, Nuclear Energy through a Virtual Field Trip.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of Io to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on Io.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of Mars to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on Mars.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of Pluto/Charon to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on Pluto or Charon.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of The Moon to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on The Moon.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of Titan to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on Titan.
Using planetary maps, students will be able to read cartographic information and …
Using planetary maps, students will be able to read cartographic information and compare the environmental conditions of Venus to those Earth. They will understand the conditions needed for life to exist, and be able to explain why it cannot exist on Venus.
Students are introduced to several key concepts of electronic circuits. They learn …
Students are introduced to several key concepts of electronic circuits. They learn about some of the physics behind circuits, the key components in a circuit and their pervasiveness in our homes and everyday lives. Students learn about Ohm's Law and how it is used to analyze circuits.
Students use the same method as in the activity from lesson 2 …
Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.
We will study the fundamental principles of classical mechanics, with a modern …
We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration. We will consider the following topics: the Lagrangian formulation; action, variational principles, and equations of motion; Hamilton's principle; conserved quantities; rigid bodies and tops; Hamiltonian formulation and canonical equations; surfaces of section; chaos; canonical transformations and generating functions; Liouville's theorem and PoincarĚŠ integral invariants; PoincarĚŠ-Birkhoff and KAM theorems; invariant curves and cantori; nonlinear resonances; resonance overlap and transition to chaos; properties of chaotic motion. Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis.
Students learn about gear ratios and power by operating toy mechanical cranes …
Students learn about gear ratios and power by operating toy mechanical cranes of differing gear ratios. They attempt to pick up objects with various masses to witness how much power must be applied to the system to oppose the force of gravity. They learn about the concept of gear ratio and practice calculating gear ratios on worksheets, discovering that smaller gear ratios are best for picking objects up quickly, and larger gear ratios make it easier to lift heavy objects.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.