This site teaches Statistics and Probability to 8th graders through a series …
This site teaches Statistics and Probability to 8th graders through a series of 303 questions and interactive activities aligned to 5 Common Core mathematics skills.
This video lesson uses the technique of induction to show students how …
This video lesson uses the technique of induction to show students how to analyze a seemingly random occurrence in order to understand it through the development of a mathematical model. Using the medium of a simple game, Dr. Lodhi demonstrates how students can first apply the 'rules' to small examples of the game and then, through careful observation, can begin to see the emergence of a possible pattern. Students will learn that they can move from observing a pattern to proving that their observation is correct by the development of a mathematical model. Dr. Lodhi provides a second game for students in the Teacher Guide downloadable on this page. There are no prerequisites for this lesson and needed materials include only a blackboard and objects of two different varieties - such as plain and striped balls, apples and oranges, etc. The lesson can be completed in a 50-minute class period.
Unified theory of information with applications to computing, communications, thermodynamics, and other …
Unified theory of information with applications to computing, communications, thermodynamics, and other sciences. Digital signals and streams, codes, compression, noise, and probability. Reversible and irreversible operations. Information in biological systems. Channel capacity. Maximum-entropy formalism. Thermodynamic equilibrium, temperature. The Second Law of Thermodynamics. Quantum computation.
Introduction to Statistics is a resource for learning and teaching introductory statistics. …
Introduction to Statistics is a resource for learning and teaching introductory statistics. This work is in the public domain. Therefore, it can be copied and reproduced without limitation. However, we would appreciate a citation where possible. Please cite as: Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University. Instructor's manual, PowerPoint Slides, and additional questions are available.
The main goal of the course is to highlight the general assumptions …
The main goal of the course is to highlight the general assumptions and methods that underlie all statistical analysis. The purpose is to get a good understanding of the scope, and the limitations of these methods. We also want to learn as much as possible about the assumptions behind the most common methods, in order to evaluate if they apply with reasonable accuracy to a given situation. Our goal is not so much learning bread and butter techniques: these are pre-programmed in widely available and used software, so much so that a mechanical acquisition of these techniques could be quickly done "on the job". What is more challenging is the evaluation of what the results of a statistical procedure really mean, how reliable they are in given circumstances, and what their limitations are.Login: guest_oclPassword: ocl
Introductory Business Statistics is designed to meet the scope and sequence requirements …
Introductory Business Statistics is designed to meet the scope and sequence requirements of the one-semester statistics course for business, economics, and related majors. Core statistical concepts and skills have been augmented with practical business examples, scenarios, and exercises. The result is a meaningful understanding of the discipline, which will serve students in their business careers and real-world experiences.
The book "Introductory Business Statistics" by Thomas K. Tiemann explores the basic …
The book "Introductory Business Statistics" by Thomas K. Tiemann explores the basic ideas behind statistics, such as populations, samples, the difference between data and information, and most importantly sampling distributions. The author covers topics including descriptive statistics and frequency distributions, normal and t-distributions, hypothesis testing, t-tests, f-tests, analysis of variance, non-parametric tests, and regression basics. Using real-world examples throughout the text, the author hopes to help students understand how statistics works, not just how to "get the right number."
Students learn about complex networks and how to use graphs to represent …
Students learn about complex networks and how to use graphs to represent them. They also learn that graph theory is a useful part of mathematics for studying complex networks in diverse applications of science and engineering, including neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Students are also introduced to random processes on networks. An illustrative example shows how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students, and demonstrates how scientists and engineers use mathematics and computers to model and simulate random processes on complex networks for the purposes of learning more about our world and creating solutions to improve our health, happiness and safety.
This is a first draft of a free (as in speech, not …
This is a first draft of a free (as in speech, not as in beer, [Sta02]) (although it is free as in beer as well) textbook for a one-semester, undergraduate statistics course. It was used for Math 156 at Colorado State University–Pueblo in the spring semester of 2017.
Mathematics explained: Here you find videos on various math topics: Pre-university Calculus …
Mathematics explained: Here you find videos on various math topics:
Pre-university Calculus (functions, equations, differentiation and integration) Vector calculus (preparation for mechanics and dynamics courses) Differential equations, Calculus Functions of several variables, Calculus Linear Algebra Probability and Statistics
In this class, students use data and systems knowledge to build models …
In this class, students use data and systems knowledge to build models of complex socio-technical systems for improved system design and decision-making. Students will enhance their model-building skills, through review and extension of functions of random variables, Poisson processes, and Markov processes; move from applied probability to statistics via Chi-squared t and f tests, derived as functions of random variables; and review classical statistics, hypothesis tests, regression, correlation and causation, simple data mining techniques, and Bayesian vs. classical statistics. A class project is required.
This lesson teaches students how to make decisions in the face of …
This lesson teaches students how to make decisions in the face of uncertainty by using decision trees. It is aimed for high school kids with a minimal background in probability; the students only need to know how to calculate the probability of two uncorrelated events both occurring (ie flipping 2 heads in a row). Over the course of this lesson, students will learn about the role of uncertainty in decision making, how to make and use a decision tree, how to use limiting cases to develop an intuition, and how this applies to everyday life. The video portion is about fifteen minutes, and the whole lesson, including activities, should be completed in about forty-five minutes. Some of the activities call for students to work in pairs, but a larger group is also okay, especially for the discussion centered activities. The required materials for this lesson are envelopes, small prizes, and some things similar in size and shape to the prize.
The students will play a classic game from a popular show. Through …
The students will play a classic game from a popular show. Through this they will see the probabilty that the ball will land each of the numbers with more accurate results coming from repeated testing.
Welcome to 6.041/6.431, a subject on the modeling and analysis of random …
Welcome to 6.041/6.431, a subject on the modeling and analysis of random phenomena and processes, including the basics of statistical inference. Nowadays, there is broad consensus that the ability to think probabilistically is a fundamental component of scientific literacy. For example: The concept of statistical significance (to be touched upon at the end of this course) is considered by the Financial Times as one of "The Ten Things Everyone Should Know About Science". A recent Scientific American article argues that statistical literacy is crucial in making health-related decisions. Finally, an article in the New York Times identifies statistical data analysis as an upcoming profession, valuable everywhere, from Google and Netflix to the Office of Management and Budget. The aim of this class is to introduce the relevant models, skills, and tools, by combining mathematics with conceptual understanding and intuition.
Interpretations of the concept of probability. Basic probability rules; random variables and …
Interpretations of the concept of probability. Basic probability rules; random variables and distribution functions; functions of random variables. Applications to quality control and the reliability assessment of mechanical/electrical components, as well as simple structures and redundant systems. Elements of statistics. Bayesian methods in engineering. Methods for reliability and risk assessment of complex systems, (event-tree and fault-tree analysis, common-cause failures, human reliability models). Uncertainty propagation in complex systems (Monte Carlo methods, Latin Hypercube Sampling). Introduction to Markov models. Examples and applications from nuclear and chemical-process plants, waste repositories, and mechanical systems. Open to qualified undergraduates.
This lesson is a birthday problem that determines the probability that at …
This lesson is a birthday problem that determines the probability that at least 2 people in a room of 30 share the same birthday. [Probability playlist: Lesson 17 of 29]
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.