Our goal is to present the key observations and unifying concepts upon …
Our goal is to present the key observations and unifying concepts upon which modern biology is based; it is not a survey of all biology! Once understood, these foundational observations and concepts should enable you to approach any biological process, from disease to kindness, from a scientific perspective. To understand biological systems we need to consider them from two complementary perspectives; how they came to be (the historic, that is, evolutionary) and how their structures, traits, and behaviors are produced (the mechanistic, that is, the physicochemical)
Imagine you are a salesman needing to visit 100 cities connected by …
Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of each paper, emphasizing the interplay of these two approaches in the field of Biological Computing. This course is appropriate for both biology and non-biology majors. Care will be taken to fill in any knowledge gaps for both scientists and engineers.
This course illustrates how knowledge and principles of biology, biochemistry, and engineering …
This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms …
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data.
In this course problems from biological engineering are used to develop structured …
In this course problems from biological engineering are used to develop structured computer programming skills and explore the theory and practice of complex systems design and construction.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
Biology is the science that studies life, but what exactly is life? …
Biology is the science that studies life, but what exactly is life? This may sound like a silly question with an obvious response, but it is not always easy to define life. For example, a branch of biology called virology studies viruses, which exhibit some of the characteristics of living entities but lack others. It turns out that although viruses can attack living organisms, cause diseases, and even reproduce, they do not meet the criteria that biologists use to define life. Consequently, virologists are not biologists, strictly speaking. Similarly, some biologists study the early molecular evolution that gave rise to life; since the events that preceded life are not biological events, these scientists are also excluded from biology in the strict sense of the term. From its earliest beginnings, biology has restled with these questions: What are the shared properties that make something “alive”? And once we know something is alive, how do we find meaningful levels of organization in its structure?
Biology 2e is designed to cover the scope and sequence requirements of …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the process of digestionDetail the steps involved in digestion and absorptionDefine eliminationExplain the role of both the small and large intestines in absorption
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the processes of digestion and absorptionCompare and contrast different types of digestive systemsExplain the specialized functions of the organs involved in processing food in the bodyDescribe the ways in which organs work together to digest food and absorb nutrients
By the end of this section, you will be able to:Explain why …
By the end of this section, you will be able to:Explain why an animal’s diet should be balanced and meet the needs of the bodyDefine the primary components of foodDescribe the essential nutrients required for cellular function that cannot be synthesized by the animal bodyExplain how energy is produced through diet and digestionDescribe how excess carbohydrates and energy are stored in the body
By the end of this section, you will be able to:Discuss internal …
By the end of this section, you will be able to:Discuss internal and external methods of fertilizationDescribe the methods used by animals for development of offspring during gestationDescribe the anatomical adaptions that occurred in animals to facilitate reproduction
By the end of this section, you will be able to:Discuss how …
By the end of this section, you will be able to:Discuss how fertilization occursExplain how the embryo forms from the zygoteDiscuss the role of cleavage and gastrulation in animal development
By the end of this chapter, you will be able to:Describe the …
By the end of this chapter, you will be able to:Describe the roles of male and female reproductive hormonesDiscuss the interplay of the ovarian and menstrual cyclesDescribe the process of menopause
By the end of this section, you will be able to:Explain fetal …
By the end of this section, you will be able to:Explain fetal development during the three trimesters of gestationDescribe labor and deliveryCompare the efficacy and duration of various types of contraceptionDiscuss causes of infertility and the therapeutic options available
By the end of this section, you will be able to:Describe human …
By the end of this section, you will be able to:Describe human male and female reproductive anatomiesDiscuss the human sexual responseDescribe spermatogenesis and oogenesis and discuss their differences and similarities
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.