Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
PhD Science Level 2 Module 2: Earth Changes
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of the Teacher Edition and student Science Logbook.

Throughout the module, students study the anchor phenomenon, the transformation of Surtsey, and build an answer to the Essential Question: How can the island of Surtsey change shape over time? As students learn about each new concept, they revisit and refine a model that represents the formation and transformation of Surtsey. At the end of the module, students use their knowledge of how land changes over time to explain the anchor phenomenon, and they apply these concepts to a new context in an End-of-Module Assessment. Through these experiences, students develop an enduring understanding that natural events transform Earth’s land as time passes.

With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.

Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.

Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.

Subject:
Applied Science
Environmental Science
Material Type:
Textbook
Provider:
Great Minds
Provider Set:
PhD Science
Date Added:
07/09/2021
PhD Science Level K Module 1: Weather
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

PhD Science Grade Levels K–2 is available as downloadable PDFs. The OER consists of the Teacher Edition and student Science Logbook.

Throughout this module, students study the anchor phenomenon, the cliff dwellings at Mesa Verde, and build an answer to the Essential Question: How did the cliff dwellings at Mesa Verde protect people from the weather? As students learn about each new concept, they develop and refine a model that represents a cliff dwelling and use that model to explore how cliff dwellings protected people from the weather. At the end of the module, students use their knowledge of weather to explain the anchor phenomenon, and they apply their learning to a new context in an End-of-Module Assessment. Through these experiences, students begin to establish an enduring understanding of weather and its effects. Specifically, students develop an understanding of the parts of weather, the effects weather has on people and their surroundings, and the ways people prepare for severe weather.
With PhD Science®, students explore science concepts through authentic phenomena and events—not fabricated versions—so students build concrete knowledge and solve real-world problems. Students drive the learning by asking questions, gathering evidence, developing models, and constructing explanations to demonstrate the new knowledge they’ve acquired. The coherent design of the curriculum across lessons, modules, and grade levels helps students use the concepts they’ve learned to build a deep understanding of science and set a firm foundation they’ll build on for years to come.

Cross-curricular connections are a core component within PhD Science. As an example, every module incorporates authentic texts and fine art to build knowledge and create additional accessible entry points to the topic of study.

Three-dimensional teaching and learning are at the heart of the curriculum. As students uncover Disciplinary Core Ideas by engaging in Science and Engineering Practices and applying the lens of Cross-Cutting Concepts, they move from reading about science to doing science.

Subject:
Applied Science
Environmental Science
Physical Science
Material Type:
Textbook
Provider:
Great Minds
Provider Set:
PhD Science
Date Added:
07/09/2021
Pharmaceutical Research Design Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014
Pharo by Example 5.0
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Pharo is an open-source, elegant and pure object-oriented language that supports truly immersive and life programming experience. Pharo offers excellent tools such as hot-debuggers and on the fly code update that change the programming experience. More at http://www.pharo.org.
Pharo is a powerful language and IDE that companies use to deliver complex business-effective applications. More at: http://www.pharo.org/success

In Pharo everything is an object, and anything can change at run-time under your fingers. Pharo is written in itself you can explore a complete world. You can feel and talk to objects. But Pharo does not stop there, with Pharo you can improve your object-oriented skills by rediscovering the essence of object-oriented programming. Pharo by Example 50, intended for both students and developers, will guide you gently through the Pharo language and environment by means of a series of examples and exercises. This book is available under the Creative Commons Attribution-ShareAlike 3.0 license.

Subject:
Applied Science
Computer Science
Material Type:
Textbook
Author:
Dimitris Chloupis
Dmitri Zagidulin
Nicolai Hess
Stéphane Ducasse
Date Added:
07/07/2021
Phonetics Workbook for Students of Communication Sciences and Disorder
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This workbook is designed to give students in communication sciences and disorders foundational knowledge in Phonetics. Students will learn to listen and transcribe the speech of typically developing speakers of Standard American English in the International Phonetic Alphabet (IPA). Students will also learn how to listen and transcribe the speech of individuals with common speech sound disorders (i.e., residual articulation disorders and phonological disorders). Students will also be introduced to the fundamentals of speech science and spectrograms as they pertain to speech sound production. Written by April M. Yorke, PhD, CCC-SLP with her students Alyssa Mahler, Carley Shermak, and Emily Sternad.

Subject:
Anatomy/Physiology
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Cleveland State University
Author:
April M Yorke
Date Added:
07/07/2021
Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Sow-Hsin
Date Added:
01/01/2005
Photonic Materials and Devices, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Optical and optoelectronic properties of semiconductors, ceramics, and polymers. Electronic structure, refractive index, electroluminescence, electro-optic and magneto-optic effects, and laser phenomena. Microphotonic materials and structures; photonic band gap materials. Materials design and processing for lasers, waveguides, modulators, switches, displays and optoelectronic integrated circuits. Alternate years. This course covers the theory, design, fabrication and applications of photonic materials and devices. After a survey of optical materials design for semiconductors, dielectrics and polymers, the course examines ray optics, electromagnetic optics and guided wave optics; physics of light-matter interactions; and device design principles of LEDs, lasers, photodetectors, modulators, fiber and waveguide interconnects, optical filters, and photonic crystals. Device processing topics include crystal growth, substrate engineering, thin film deposition, etching and process integration for dielectric, silicon and compound semiconductor materials. The course also covers microphotonic integrated circuits and applications in telecom/datacom systems. Course assignments include four design projects that emphasize materials, devices and systems applications.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kimerling, Lionel
Date Added:
01/01/2006
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Applied Science
Biology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Photosynthesis and Cellular Respiration at the Atomic Level
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration

Subject:
Applied Science
Chemistry
Engineering
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Kamryn Jenkins
Tuyen Duddles
Weiyang Yang
Wen Li
Date Added:
08/27/2018
Photovoltaic Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a series of four lessons, students are introduced to many factors that affect the power output of photovoltaic (PV) solar panels. Factors such as the angle of the sun, panel temperature, specific circuit characteristics, and reflected radiation determine the efficiency of solar panels. These four lessons are paired with hands-on activities in which students design, build and test small photovoltaic systems. Students collect their own data, and examine different variables to determine their effects on the efficiency of PV panels to generate electrical power.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Denise W. Carlson
Dr. Gregor Henze
Eszter Horyani
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Photovoltaic Solar Energy Systems, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bucciarelli, Louis
Date Added:
01/01/2004
Physical Computing Using Arduinos: Making an LED Blink and Fade
Read the Fine Print
Educational Use
Rating
0.0 stars

Students download the software needed to create Arduino programs and make sure their Arduino microcontrollers work correctly. Then, they connect an LED to the Arduino and type up and upload programs to the Arduino board to 1) make the LED blink on and off and 2) make the LED fade (brighten and then dim). Throughout, students reflect on what they've accomplished by answering questions and modifying the original programs and circuits in order to achieve new outcomes. A design challenge gives students a chance to demonstrate their understanding of actuators and Arduinos; they design a functioning system using an Arduino, at least three actuators and either a buzzer or toy motor. For their designs, students sketch, create and turn in a user's manual for the system (text description, commented program, detailed hardware diagram). Numerous worksheets and handouts are provided.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lisa Ali
Michael Zitolo
Date Added:
10/14/2015
Physical Modeling in MATLAB
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Most books that use MATLAB are aimed at readers who know how to program. This book is for people who have never programmed before. As a result, the order of presentation is unusual. The book starts with scalar values and works up to vectors and matrices very gradually. This approach is good for beginning programmers, because it is hard to understand composite objects until you understand basic programming semantics.

Subject:
Applied Science
Computer Science
Material Type:
Textbook
Provider:
Green Tea Press
Author:
Allen B. Downey
Date Added:
01/01/2009
Physics Tug of War
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alex Conner
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Tom Rutkowski
Date Added:
10/14/2015
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Physics of Microfabrication: Front End Processing, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamental principles of the processes used in the fabrication of silicon monolithic integrated circuits. Physical models of bulk crystal growth, thermal oxidation, solid-state diffusion, ion implantation, epitaxial deposition, chemical vapor deposition, and physical vapor deposition. Refractory metal silicides, plasma and reactive ion etching, and rapid thermal processing. Process modeling and simulation. Technological limitations on integrated circuit design and fabrication. VLSI fundamentals.

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hoyt, Judy
Date Added:
01/01/2004
Physics of Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
09/18/2014
Physics of the Flying T-Shirt
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the physics concepts of air resistance and launch angle as they apply to catapults. This includes the basic concepts of position, velocity and acceleration and their relationships to one another. They use algebra to solve for one variable given two variables.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi Jackson
Denise W. Carlson
Jonathan MacNeil
Scott Duckworth
Stephanie Rivale
Date Added:
09/18/2014
Pictures Please: Traveling Light
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn that light travels in a straight line from a light source and that ray diagrams help us understand how an image will be created by a lens. In the accompanying activity, students explore the concepts behind the workings of a pinhole camera.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
09/18/2014