Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Mechatronic System Design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mechatronic system design deals with the design of controlled motion systems by the integration of functional elements from a multitude of disciplines. It starts with thinking how the required function can be realised by the combination of different subsystems according to a Systems Engineering approach (V-model).

Some supporting disciplines, like power-electronics and electromechanics, are not part of the BSc program of mechanical engineers. For this reason this course introduces these disciplines in connection with PID-motion control principles to realise an optimally designed motion system.
The target application for the lectures are motion systems that combine high speed movements with extreme precision.
The course covers the following four main subjects:

Dynamics of motion systems in the time and frequency domain, including analytical frequency transfer functions that are represented in Bode and Nyquist plots.
Motion control with PID-feedback and model-based feed forward control-principles that effectively deal with the mechanical dynamic anomalies of the plant.
Electromechanical actuators, mainly based on the electromagnetic Lorentz principle. Reluctance force and piezoelectric actuators will be shortly presented to complete the overview.
Power electronics that are used for driving electromagnetic actuators.
The fifth relevant discipline, position measurement systems is dealt with in another course: WB2303, Electronics and measurement.
The most important educational element that will be addressed is the necessary knowledge of the physical phenomena that act on motion systems, to be able to critically judge results obtained with simulation software.
The lectures challenge the capability of students to match simulation models with reality, to translate a real system into a sufficiently simplified dynamic model and use the derived dynamic properties to design a suitable, practically realiseable controller.
This course increases the understanding what a position control system does in reality in terms of virtual mechanical properties like stiffness and damping that are added to the mechanical plant by a closed loop feedback controller.

It is shown how a motion system can be analysed and modelled top-down with approximating (scalar) calculations by hand, giving a sufficient feel of the problem to make valuable concept design decisions in an early stage.
With this method students learn to work more efficiently by starting their design with a quick and dirty global analysis to prove feasibility or direct further detailed modelling in specific problem areas.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof ir R.H. Munnig Schmidt
Date Added:
02/23/2016
Mechatronics, Fall 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Trumper, David L.
Date Added:
01/01/2014
Medical Artificial Intelligence, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Applications of rule chaining, heuristic search, constraint propagation, constrained search, inheritance, and other problem-solving paradigms. Applications of identification trees, neural nets, genetic algorithms, and other learning paradigms. Speculations on the contributions of human vision and language systems to human intelligence.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Szolovits, Peter
Date Added:
01/01/2005
Medical Computing, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The focus of the course is on medical science and practice in the age of automation and the genome, both present and future. It includes an analysis of the computational needs of clinical medicine, a review systems and approaches that have been used to support those needs, and an examination of new technologies.

Subject:
Applied Science
Computer Science
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ohno-Machado, Lucila
Date Added:
01/01/2003
Medical Decision Support, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Presents the main concepts of decision analysis, artificial intelligence, and predictive model construction and evaluation in the specific context of medical applications. Emphasizes the advantages and disadvantages of using these methods in real-world systems and provides hands-on experience. Technical focus on decision analysis, knowledge-based systems (qualitative and quantitative), learning systems (including logistic regression, classification trees, neural networks), and techniques to evaluate the performance of such systems. Students produce a final project using the methods learned in the subject, based on actual clinical data. (Required for students in the Master's Program in Medical Informatics, but open to other graduate students and advanced undergraduates.)

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2005
Medical Instrumentation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will discuss the special considerations that must be made when dealing with the human body, and will gain an appreciation for the amazing devices that have improved our quality of life. They will also explore how " čĎForm Fits Function'. This lesson should serve as a starting point for students to begin to ponder how the medical devices in their everyday lives actually work.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily McDowell
Date Added:
09/18/2014
The Mediterranean Diet in the Prevention of Degenerative Chronic Diseases
Unrestricted Use
CC BY
Rating
0.0 stars

This is a peer-reviewed chapter in an open access book, Superfood and Functional Food. This chapter serves as an introductory overview of the value of the Mediterranean diet and its food components in the prevention of chronic diseases, such as CVD and cancer. The protective effects of antioxidants, polyphenols, fiber, unsaturated fatty acids and alcohol are highlighted. The chapter is accurate, relevant and clear. It is extensively referenced, with a focus on large epidemiological studies and nutrigenomics. It is a technical reading that is best suited to nurses, physicians, nutritionists and other allied health professionals at both the undergraduate and graduate level.

Subject:
Applied Science
Health, Medicine and Nursing
Life Science
Nutrition
Material Type:
Reading
Author:
Elisabetta Della Valle
Francesco Cacciatore
Francesco Salvatore
Maurizio Trevisan
Roberto Marcantonio
Saverio Stranges
Eduardo Farinaro
Date Added:
12/07/2022
Mercalli Scale Illustrated
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn about the Mercalli Scale for rating earthquakes. Also, students will make a booklet with drawings that represent each rating of the scale.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Mercury and Venus
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Mercury and Venus, the first and second planets nearest the Sun. They learn about the planets' characteristics, including their differences from Earth. Students also learn how engineers are involved in the study of planets by designing equipment and spacecraft to go where it is too dangerous for humans.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Sam Semakula
Date Added:
09/18/2014
A Merry-Go-Round for Dirty Air
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe and discuss a cup and pencil model of a cyclone to better understand the science behind how this pollutant recovery method functions in cleaning industrial air pollution.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Benjamin S. Terry
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Messin' with Mixtures
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the properties of a heterogeneous mixture, trail mix, as if it were a contaminated soil sample near a construction site. This activity shows students that heterogeneous mixtures can be separated by physical means, and that when separated, all the parts will equal the whole.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Metamorphosis — Stories of Change
Read the Fine Print
Educational Use
Rating
0.0 stars

The goal of this activity is for students to learn how to tell a story in order to make a complex topic (such as global warming or ozone holes) easier for a reader to grasp. Students realize that the narrative impulse underlies even scientific and technical writing and gain a better understanding of the role of myth as a "science" of imagination that helps us to gain insight into human motivation.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Methods and algorithms for system design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

System design is the central topic of this course. We move beyond the methods developed in circuit design (although we shall have interest in those) and consider situations in which the functional behavior of a system is the first object under consideration.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Assessment
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
T.G.R.M. van Leuken
Date Added:
07/14/2021
Mice Rule! (Or Not)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the relationships between genetics, biodiversity, and evolution through a simple activity involving hypothetical wild mouse populations. First, students toss coins to determine what traits a set of mouse parents possesses, such as fur color, body size, heat tolerance, and running speed. Next they use coin tossing to determine the traits a mouse pup born to these parents possesses. These physical features are then compared to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Michelangelo, Laurentian Library
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This art history video discussion examines Michelangelo's "Laurentian Library" (vestibule and reading room), begun 1524, opened 1571, San Lorenzo, Florence.

Subject:
Applied Science
Architecture and Design
Art History
Arts and Humanities
Material Type:
Diagram/Illustration
Lecture
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
07/07/2021
Michelangelo's Slaves
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This art history video discussion examines Michelangelo's "The Slaves" (commonly referred to as the Dying Slave and the Rebellious Slave), marble, 2.09 m high, 1513-15 (Musee du Louvre, Paris).

Subject:
Applied Science
Architecture and Design
Art History
Arts and Humanities
Material Type:
Diagram/Illustration
Lecture
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
07/07/2021
Microbes Know How to Work!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design systems that use microbes to break down a water pollutant (in this case, sugar). They explore how temperature affects the rate of pollutant decomposition.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014
Microeconomics, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Microeconomics will ground you in - surprise - basic microeconomics-how markets function, how to think about allocating scarce resources among competing uses, what profit maximizing behavior means in industries with different numbers of competitors, how technology and trade reshapes the opportunities people face, and so on. We will apply economic ideas to understand current economic problems, including the housing bubble, the current unemployment situation (particularly for high school gradutes), how Google makes its money and why healthcare costs are rising so fast.

Subject:
Applied Science
Business and Communication
Economics
Health, Medicine and Nursing
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Levy, Frank
Date Added:
01/01/2009
Microelectronic Devices and Circuits, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.012 is the header course for the department's Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fonstad Jr, Clifton
Date Added:
01/01/2009
Microelectronic Devices and Circuits, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.012 is the header course for the department's Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hoyt, Judy
Kong, Jing
Sodini, Charles
del Alamo, Jes
Date Added:
01/01/2009