Updating search results...

Search Resources

2825 Results

View
Selected filters:
  • Applied Science
Management in Engineering, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course gives an overview of engineering management and covers topics such as financial principles, management of innovation, technology strategy, and best management practices. The focus of the course is the development of individual skills and team work. This is carried out through an exposure to management tools.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Abbott Weiss
Henry S. Marcus
Jung-Hoon Chun
Date Added:
01/01/2012
Managing Building Adaptation: a Sustainable Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Do you have a passion for buildings and want to contribute to a sustainable environment? Then this is your chance to make a difference! The biggest sustainability challenge for cities worldwide is adapting existing obsolescent buildings and making them future-proof. In this course, you will learn about adapting buildings for sustainability.

This course first introduces you to the challenging management task of redeveloping buildings for future use. Then you will learn how different management tools can be used to convert old buildings for sustainable reuse.

Prior experience with studies or jobs related to the built environment is not essential for this course, but will be a great advantage.

This MOOC is especially relevant for students who are interested in Real Estate, Project Management, Urban Planning, Architecture, Construction, Engineering, and Sustainability.

The course is taught by a multi-disciplinary team of instructors and professors with relevant practical and theoretical experience. You can use the practical knowledge you obtain during this course to tackle many challenges related to the built environment.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Erwin Heurkens
Gerard van Bortel
Hilde Remoy
Jelle Koolwijk
John Heints
Date Added:
07/14/2021
Manned Mission to Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson will discuss the details for a possible future manned mission to Mars. The human risks are discussed and evaluated to minimize danger to astronauts. A specialized launch schedule is provided and the different professions of the crew are discussed. Once on the surface, the crew's activities and living area will be covered, as well as how they will make enough fuel to make it off the Red Planet and return home.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Manufacturing System and Supply Chain Design, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

15.763 focuses on decision making for system design, as it arises in manufacturing systems and supply chains. Students are exposed to frameworks and models for structuring the key issues and trade-offs. The class presents and discusses new opportunities, issues and concepts introduced by the internet and e-commerce. It also introduces various models, methods and software tools for logistics network design, capacity planning and flexibility, make-buy, and integration with product development. Industry applications and cases illustrate concepts and challenges. Recommended for operations management concentrators. Second half-term subject.

Subject:
Applied Science
Business and Communication
Career and Technical Education
Environmental Science
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Graves, Stephen
Simchi-Levi, David
Date Added:
01/01/2005
Manufacturing Technologies: Making a Picture Frame
Read the Fine Print
Educational Use
Rating
0.0 stars

The basic processes involved in manufacturing systems are demonstrated while students produce their own picture frames. They learn about cutting, shaping, assembly, joining and finishing, as well as attention to quality, safety and production quantity.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Esra Unluaslan
Date Added:
09/18/2014
Many Paths
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the composition and practical application of parallel circuitry, compared to series circuitry. Students design and build parallel circuits and investigate their characteristics, and apply Ohm's law.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Map-a-Buddy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of tracking and spatial movements of animals in relation to the environments in which they live. Students improve their understanding of animal tracking and how technology is used in this process.

Subject:
Applied Science
Engineering
Life Science
Zoology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Heather Kerkering
Jonelle Stovall
Kimberly Goetz
Melissa Sanderson
Date Added:
10/14/2015
March Portfolio Seminar, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of the Portfolio Seminar is to assist in developing a critical position in relationship to their design work. By engaging multiple forms of representation, written and visual, students will explore methods that facilitate describing and representing their design work. Through a critical assessment of their existing portfolios, students will first be challenged to articulate design theses and interests in their past projects. Different mediums of representation will then be studied in order to hone an understanding of the relationship between form and content, and more specifically, the understanding of particular modes of representation as different filters through which their work can be read. Some of the questions that will be addressed are: How does one go about describing an image? How does one theorize representation? How does one articulate a design thesis in writing verses visual media? How can the two interact to enhance each other? How do different media, printed verses web publishing, affect the representation of work? How is your work best communicated.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yoon, Jeannie Meejin
Date Added:
01/01/2003
Marine Autonomy, Sensing and Communications, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers basic topics in autonomous marine vehicles, focusing mainly on software and algorithms for autonomous decision making (autonomy) by underwater vehicles operating in the ocean environments, autonomously adapting to the environment for improved sensing performance. It will introduce students to underwater acoustic communication environment, as well as the various options for undersea navigation, both crucial to the operation of collaborative undersea networks for environmental sensing. Sensors for acoustic, biological and chemical sensing by underwater vehicles and their integration with the autonomy system for environmentally adaptive undersea mapping and observation will be covered. The subject will have a significant lab component, involving the use of the MOOS-IvP autonomy software infrastructure for developing integrated sensing, modeling and control solutions for a variety of ocean observation problems, using simulation environments and a field testbed with small autonomous surface craft and underwater vehicles operated on the Charles River.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Henrik Schmidt
Michael Benjamin
Date Added:
01/01/2012
Marine Hydrodynamics (13.021), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yue, Dick
Date Added:
01/01/2005
Marine Mapping
Read the Fine Print
Educational Use
Rating
0.0 stars

The marine environment is unique and because little light penetrates under water, technologies that use sound are required to gather information. The seafloor is characterized using underwater sound and acoustical systems. Current technological innovations enable scientists to further understand and apply information about animal locations and habitat. Remote sensing and exploration with underwater vehicles enables researchers to map and understand the sea floor. Similar technologies also aid in animal tracking, a method used within science and commercial industries. Through inquiry-based learning techniques, students learn the importance of habitat mapping and animal tracking.

Subject:
Applied Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Heather Kerkering
Jonelle Stovall
Kimberly Goetz
Melissa Sanderson
Date Added:
10/14/2015
Marine animal tracking
Read the Fine Print
Educational Use
Rating
0.0 stars

The following lesson is an introduction to the ideas and implications of animal tracking. Animal tracking is a useful method used within science and commercial industries. For instance, when planning the development coastal areas, animal presence and movement should be taken into consideration. The lesson engages students in an activity to monitor animal foraging behavior on a spatial scale. The students will break into groups and track each other's movements as they move through a pre-determined course. The results will be recorded both individually and collaboratively in an attempt to understand animal movement regarding foraging behavior. Students will also engage in a creative design activity, focusing on how they would design a tag for a marine animal of their choice. In conclusion, instructors will query the class on data interpretation and how spatial information is important in relation to commercial, conservation, and scientific research decisions.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Heather Kerkering
Jonelle Stovall
Kimberly Goetz
Melissa Sanderson
Date Added:
09/18/2014
Mars Rover App Creation
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on their experience exploring the Mars rover Curiosity and learning about what engineers must go through to develop a vehicle like Curiosity, students create Android apps that can control LEGO MINDSTORMS(TM) NXT robots, simulating the difficulties the Curiosity rover could encounter. The activity goal is to teach students programming design and programming skills using MIT's App Inventor software as the vehicle for the learning. The (free to download) App Inventor program enables Android apps to be created using building blocks without having to actually know a programming language. At activity end, students are ready to apply what they learn to write other applications for Android devices.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Mars and Jupiter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Mars and Jupiter, the fourth and fifth planets from the Sun. They learn some of the unique characteristics of these planets. They also learn how engineers help us learn about these planets with the design and development of telescopes, deep space antennas, spacecraft and planetary rovers.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Martini's Architectural Veduta
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This art history video discussion examines Francesco di Giorgio Martini's (attributed), Architectural Veduta, c. 1490, oil on poplar (Gemaldegalerie, Staatliche Museen zu Berlin).

Subject:
Applied Science
Architecture and Design
Art History
Arts and Humanities
Material Type:
Diagram/Illustration
Lecture
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
07/07/2021
Master Driver
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of a design challenge, students learn how to use a rotation sensor (located inside the casing of a LEGO® MINDSTORMS ® NXT motor) to measure how far a robot moves with each rotation. Through experimentation and measurement with the sensor, student pairs determine the relationship between the number of rotations of the robot's wheels and the distance traveled by the robot. Then they use this ratio to program LEGO robots to move precise distances in a contest of accuracy. The robot that gets closest to the goal without touching the toy figures at the finish line is the winning programming design. Students learn how rotational sensors measure distance, how mathematics can be used for real-world purposes, and about potential sources of error due to gearing when using rotation sensor readings for distance calculations. They also become familiar with the engineering design process as they engage in its steps, from understanding the problem to multiple test/improve iterations to successful design.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Matching the Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Aubrey McKelvey
Date Added:
09/18/2014
Materiaalkunde 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

De student die dit vak met goed gevolg heeft doorlopen zal in staat zijn om: (1) Op basis van eigenschappen en gedrag onder externe invloeden een klassificatie te maken van materialen en op basis daarvan een eerste indruk te krijgen van hun geschiktheid in bepaalde toepassingen. (2) Inzicht te verkrijgen in de rol van materialen, materiaalgebruik en materiaalontwikkeling in de ontwikkeling, kwaliteit, mogelijkheden en bedreigingen van de samenleving afhankelijk van tijd, plaats en cultuur. Dit inzicht is gebaseerd op objectieve data. (3) Vast te stellen welke materiaaleigenschappen van kritisch belang zijn in mechanische en andere werktuigbouwkundige ontwerpen, en met behulp van eenduidige criteria materiaalkeuzes in de ontwerpcriteria van constructies te optimaliseren. De belangrijkste eigenschappen die aan de orde komen zijn dichtheid, stijfheid, sterkte, plasticiteit, breuk, vermoeiing, wrijving, slijtage. (4) Mechanische eigenschappen van materialen te herleiden tot chemische bindingen, onderlinge krachten, ordeningspatronen, defecten, en relatieve bewegingsmogelijkheden van atomen. De verschillende lengteschalen die materiaaleigenschappen bepalen staan hierbij centraal. Hiermee zal tevens inzicht verkregen worden in de mogelijkheden en beperkingen van materialen onder extreme omstandigheden en in de strategieën die gevolgd kunnen worden om materialen te verbeteren. (5) Optimale keuzes te maken binnen het beschikbare spectrum van procestechnieken (productie, bewerking, vorming, verbinding, afwerking) om componenten en eindproducten te vervaardigen. (6) Software te gebruiken waarmee, gegeven een aantal vereisten van materiaaleigenschappen, het beste materiaal voor een ontwerp kan worden geselecteerd. Deze materiaaleigenschappen gaan verder dan mechanische eigenschappen alleen. Thermische, elektrische, ecologische, economische en recycling-eigenschappen zullen in voorkomende gevallen ook meegewogen worden.

Subject:
Applied Science
Engineering
Material Type:
Assessment
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof. dr. B.J. (Barend) Thijsse
Date Added:
07/14/2021
Materials Laboratory, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/vis and force spectroscopy), and degree of order (x-ray scattering) in condensed matter; and investigation of structural transitions and structure-property relationships through practical materials examples.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Stellacci, Francesco
Date Added:
01/01/2006
Materials Processing, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of 3.044 is to teach cost-effective and sustainable production of solid material with a desired geometry, structure or distribution of structures, and production volume. Toward this end, it is organized around different types of phase transformations which determine the structure in various processes for making materials, in roughly increasing order of entropy change during those transformations: solid heat treatment, liquid-solid processing, fluid behavior, deformation processing, and vapor-solid processing. The course ends with several lectures that place the subject in the context of society at large.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schuh, Chris
Date Added:
01/01/2013