Updating search results...

Search Resources

1447 Results

View
Selected filters:
  • Physical Science
String Theory for Undergraduates, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zwiebach, Barton
Date Added:
01/01/2007
The Stroboscopic Effect
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module is about a particular effect of the frequency, which is the stroboscopic effect. The lesson discusses and demonstrates low frequency phenomena - less than 16 Hz - that can usually be observed clearly by the human eye, as well as high frequency phenomena - more than 25 Hz - that are difficult for the human eye to catch. This video also explores and demonstrates how high frequency phenomena can be observed by freezing the fast moving phenomena using a device called a stroboscope. The only prerequisite for this video is that students understand the definition of the frequency of a periodic phenomenon.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Nawwaf Abu-Aqeel
Date Added:
07/02/2021
Stromingsleer
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Op basis van de integraal balansen worden de volgende onderwerpen van de stromingsleer behandeld:

- Integraal balansen in hun algemene vorm
- Dimensieloze kentallen, dynamische gelijkvormigheid
- Couette and Poiseulle stroming met toepassing op smeringstheorie
- Stroming door buizen, Moody diagram en verliesfactoren
- Integraal balans voor de grenslaag en berekening van weerstand door wrijving
- Stroming rond algemene lichamen, weerstand door drukkrachten, lift, instationariteit, vleugelprofielen
- Wrijvingsloze compressibele stromingen, isentropische stromingen, schokgolven
- Compressibele stromingen met wrijving in buizen
- Open kanaal stromingen, hydraulische sprong

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Assessment
Homework/Assignment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. J. Westerweel
Date Added:
07/14/2021
Strong Interactions: Effective Field Theories of QCD, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The strong force which bind quarks together is described by a relativistic quantum field theory called quantum chromodynamics (QCD). Subject surveys: The QCD Langrangian, asymptotic freedom and deep inelastic scattering, jets, the QCD vacuum, instantons and the U(1) problem, lattice guage theory, and other phases of QCD.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Stewart, Iain
Date Added:
01/01/2006
Strongly Correlated Systems in Condensed Matter Physics, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study of condensed matter systems where interactions between electrons play an important role. Topics vary depending on lecturer but may include low-dimension magnetic and electronic systems, disorder and quantum transport, magnetic impurities (the Kondo problem), quantum spin systems, the Hubbard model and high temperature superconductors. Topics are chosen to illustrate the application of diagrammatic techniques, field theory approaches, and renormalization group methods in condensed matter physics. In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Levitov, Leonid
Date Added:
01/01/2003
Structural Geology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanics of rock deformation. Discusses recognition, interpretation, and mechanics of faults, folds, structural features of igneous and metamorphic rocks, and superposed deformations. Introduces regional structural geology and tectonics. Laboratory includes techniques of structural analysis, recognition and interpretation of structures on geologic maps, and construction of interpretive cross sections. Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Burchfiel, B. Clark
Date Added:
01/01/2005
Structural Geology & Map Interpretation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The discipline of structural geology studies the architecture of the solid Earth and other planets. Rock deformation patterns are exciting features beacause of their aesthetic beauty and their economic interest to man. Knowledge of the subsurface structure is vital for the success of a variety of engineering and mineral exploration pograms. A thorough understanding of rock structures is essential for strategic planning in the petroleum and mining industry, in construction operations, in waste disposal surveys and for water exploration. Deformation structures in the country rock are important further for locallizing hazard zones, such as potential rockslide masses, ground subsidence, and seismic faults. Research activities concentrate on rock defomation structures in he shallow continental crust.

Subject:
Geology
Physical Science
Material Type:
Reading
Textbook
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R. Weijermars
Date Added:
02/08/2016
Structure and Dynamics of the CMB Region, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Core Mantle Boundary (CMB) represents one of the most important physical and chemical discontinuities of the deep Earth as it separates the solid state, convective lower mantle from the liquid outer core. In this seminar course, we will examine our current understanding of the CMB region from integrated seismological, mineral physics and geodynamical perspectives. Instructors will introduce state-of-the-art methodologies that are employed to characterize the CMB region and relevant papers will be discussed in class. Topics will include CMB detection and topography, D'' anisotropy, seismic velocity anomalies (e.g., ultra-low velocity zones), temperature, chemical reactions, phase relations, and mineral fabrications at the core-mantle boundary. These results will be integrated to address the CMB's fundamental role in both mantle and core dynamics.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Rondenay, Stephane
Date Added:
01/01/2004
Structure of Earth Materials, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. Introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. Surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Evans, J
Grove, Timothy L.
Date Added:
01/01/2004
A Student's Guide to Tropical Marine Biology
Unrestricted Use
CC BY
Rating
0.0 stars

A Student’s Guide to Tropical Marine Biology is written entirely by students enrolled in the Keene State College Tropical Marine Biology course taught by Dr. Karen Cangialosi. Our goal was to investigate three main aspects of tropical marine biology: understanding the system, identifying problems, and evaluating solutions. Each of the sections contains chapters that utilize openly licensed material and images, and are rich with hyperlinks to other sources. Some of the most pressing tropical marine ecosystem issues are broken up into five sections: Coral Reefs and Diversity, Common Fishes to the Coral Reef, Environmental Threats, Reef Conservation, and Major Marine Phyla. These sections are not mutually exclusive; repetition in some content between chapters is intentional as we expect that users may not read the whole book. This work represents a unique collaborative process with many students across semesters authoring and editing, and therefore reflects the interests and intentions of a broad range of students, not one person’s ideas. This collaboration began with contributions from KSC students in the 2017 semester and includes work from the 2019 class, as well as new content and editorial work from 2017 & 2019 alumni. We look forward to future editions of this book. Enjoy exploring the rainforests of the sea through our collaborative project and please share with those who care!

Subject:
Biology
Life Science
Oceanography
Physical Science
Material Type:
Full Course
Author:
Alana Olendorf
Allie Tolles
Andrew Fuhs
Audrey Boraski
Bryce Chounard
Christian Paparazzo
Devon Audibert
Emily Michaeles
Emma Verville
Haley Fantasia
Haley Zanga
Jaime Marsh
Jason Charbonneau
Jennifer Rosado
Jessica Comeau
Maddi Ouellette
Malisa Rai
Marisa Benjamin
Mary Swain
Melissa Wydra
Morgan Tupper
Sarah Larsen
Simone McEwan
Suki Graham
Tim Brodeur
Will Trautmann
Date Added:
07/07/2021
Study Design for Air Quality Research
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take an in-depth look at what goes into planning a research project, which prepares them to take the lead on their own projects. Examining a case study, students first practice planning a research project that compares traditional cook stoves to improved cook stoves for use in the developing world. Then they compare their plans to one used in the real-world by professional researchers, gaining perspective and details on the thought and planning that goes into good research work. Then students are provided with example materials, a blank template and support to take them from brainstorming to completing a detailed research plan for their own air quality research projects. Conducting students’ AQ-IQ research studies requires additional time and equipment beyond this planning activity. Then after the data is collected and analyzed, teams interpret the data and present summary research posters by conducting the next associated activity Numerous student handouts and a PowerPoint® presentation are provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Ashley Collier
Ben Graves
Daniel Knight
Drew Meyers
Eric Ambos
Eric Lee
Erik Hotaling
Evan Coffey
Hanadi Adel Salamah
Joanna Gordon
Katya Hafich
Michael Hannigan
Nicholas VanderKolk
Olivia Cecil
Victoria Danner
Date Added:
07/07/2021
Sugar and Salt Solutions
Unrestricted Use
CC BY
Rating
0.0 stars

What happens when sugar and salt are added to water? Pour in sugar, shake in salt, and evaporate water to see the effects on concentration and conductivity. Zoom in to see how different sugar and salt compounds dissolve. Zoom in again to explore the role of water.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Robert Parson
Sam Reid
Trish Loeblein
Date Added:
10/12/2011
Suit Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about providing healthcare in a global setting and the importance of wearing protective equipment when treating patients with infectious diseases like Ebola. They learn about biohazard suits, heat transfer through conduction and convection and the engineering design cycle. Student teams design, create and test (and improve) their own Ebola biohazard suit prototypes that cover one arm and hand, including a ventilation system to cool the inside of the suit.

Subject:
Biology
Career and Technical Education
Life Science
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Fleishman
Leyf Starling
Michaela Rikard
Date Added:
07/07/2021
Sun, Earth and Moon Model
Unrestricted Use
CC BY
Rating
0.0 stars

Students build a model of the Sun-Earth-Moon system, exploring how the Moon revolves around the Earth, and the Earth around the Sun. Students play a memory game and learn some characteristics about the three objects.

Subject:
Physical Science
Material Type:
Activity/Lab
Game
Provider:
International Astronomical Union
Provider Set:
astroEDU
Date Added:
01/01/2016
Sun's Shadow
Unrestricted Use
CC BY
Rating
0.0 stars

Watch shadows during the course of the day to explore the influence of the Sun’s position in the sky on them, as well as how they change over the seasons. During the next season, repeat the experiment and note the changes from the previous season. Repeat over a period of one year for each season.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Tasneem Rossenkhan, UNAWE
Date Added:
07/07/2021
Super Spinners!
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this hands-on activity to demonstrate rotational inertia, rotational speed, angular momentum, and velocity. Students build at least two simple spinners to conduct experiments with different mass distributions and shapes, as they strive to design and build the spinner that spins the longest.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Superconducting Magnets, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on one important engineering application of superconductors - the generation of large-scale and intense magnetic fields. It includes a review of electromagnetic theory; detailed treatment of magnet design and operational issues, including "usable" superconductors, field and stress analyses, magnet instabilities, ac losses and mechanical disturbances, quench and protection, experimental techniques, and cryogenics. The course also examines new high-temperature superconductors for magnets, as well as design and operational issues at high temperatures.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Iwasa,Yukikazu
Minervini, Joseph
Date Added:
01/01/2003
Superhydrophobicity: The Lotus Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to superhydrophobic surfaces and the "lotus effect." Water spilled on a superhydrophobic surface does not wet the surface, but simply rolls off. Additionally, as water moves across the superhydrophobic surface, it picks up and carries away any foreign material, such as dust or dirt. Students learn how plants create and use superhydrophobic surfaces in nature and how engineers have created human-made products that mimic the properties of these natural surfaces. They also learn about the tendency of all superhydrophobic surfaces to develop water droplets that do not roll off the surface but become "pinned" under certain conditions, such as water droplets formed from condensation. They see how the introduction of mechanical energy can "unpin" these water droplets and restore the desirable properties of the superhydrophobic surface.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Supplies to Survive in the Jungle
Read the Fine Print
Educational Use
Rating
0.0 stars

At this stage of the "Lost in the Amazon" (hypothetical) adventure, students determine what supplies they will take with them to survive their trip through the Amazon. They use estimation and basic math skills to determine how much they can carry and what they can use to survive in the jungle environment as they travel on to their destination.

Subject:
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
07/07/2021