Students engage in an interactive "hot potato" demonstration to gain an appreciation …
Students engage in an interactive "hot potato" demonstration to gain an appreciation for the flow of electrons through a circuit. Students role play the different parts of a simple circuit and send small items representing electrons (paper or candy pieces) through the circuit.
In this activity, students will learn how water can be polluted by …
In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.
Students investigate the property dependence between liquid and solid interfaces and determine …
Students investigate the property dependence between liquid and solid interfaces and determine observable differences in how liquids react to different solid surfaces. They compare copper pennies and plastic "coins" as the two test surfaces. Using an eye dropper to deliver various fluids onto the surfaces, students determine the volume and mass of a liquid that can sit on the surface. They use rulers, scales, equations of volume and area, and other methods of approximation and observation, to make their own graphical interpretations of trends. They apply what they learned to design two super-surfaces (from provided surface treatment materials) that arecapable of holding the most liquid by volume and by mass. Cost of materials is a parameter in their design decisions.
Students explore their peripheral vision by reading large letters on index cards. …
Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.
Students investigate how different riparian ground covers, such as grass or pavement, …
Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.
Through this lesson and its associated activity, students explore the role of …
Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.
The purpose of this course is to discuss modern techniques of generation …
The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.
Optical and optoelectronic properties of semiconductors, ceramics, and polymers. Electronic structure, refractive …
Optical and optoelectronic properties of semiconductors, ceramics, and polymers. Electronic structure, refractive index, electroluminescence, electro-optic and magneto-optic effects, and laser phenomena. Microphotonic materials and structures; photonic band gap materials. Materials design and processing for lasers, waveguides, modulators, switches, displays and optoelectronic integrated circuits. Alternate years. This course covers the theory, design, fabrication and applications of photonic materials and devices. After a survey of optical materials design for semiconductors, dielectrics and polymers, the course examines ray optics, electromagnetic optics and guided wave optics; physics of light-matter interactions; and device design principles of LEDs, lasers, photodetectors, modulators, fiber and waveguide interconnects, optical filters, and photonic crystals. Device processing topics include crystal growth, substrate engineering, thin film deposition, etching and process integration for dielectric, silicon and compound semiconductor materials. The course also covers microphotonic integrated circuits and applications in telecom/datacom systems. Course assignments include four design projects that emphasize materials, devices and systems applications.
This lesson covers the process of photosynthesis and the related plant cell …
This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical …
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration
Through a series of four lessons, students are introduced to many factors …
Through a series of four lessons, students are introduced to many factors that affect the power output of photovoltaic (PV) solar panels. Factors such as the angle of the sun, panel temperature, specific circuit characteristics, and reflected radiation determine the efficiency of solar panels. These four lessons are paired with hands-on activities in which students design, build and test small photovoltaic systems. Students collect their own data, and examine different variables to determine their effects on the efficiency of PV panels to generate electrical power.
This class will study the behavior of photovoltaic solar energy systems, focusing …
This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.
Students download the software needed to create Arduino programs and make sure …
Students download the software needed to create Arduino programs and make sure their Arduino microcontrollers work correctly. Then, they connect an LED to the Arduino and type up and upload programs to the Arduino board to 1) make the LED blink on and off and 2) make the LED fade (brighten and then dim). Throughout, students reflect on what they've accomplished by answering questions and modifying the original programs and circuits in order to achieve new outcomes. A design challenge gives students a chance to demonstrate their understanding of actuators and Arduinos; they design a functioning system using an Arduino, at least three actuators and either a buzzer or toy motor. For their designs, students sketch, create and turn in a user's manual for the system (text description, commented program, detailed hardware diagram). Numerous worksheets and handouts are provided.
In this activity, students will learn about Newton's 2nd Law of Motion. …
In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.
From drinking fountains at playgrounds, water systems in homes, and working bathrooms …
From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.
Students explore the physics utilized by engineers in designing today's roller coasters, …
Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.
Students are introduced to the physics concepts of air resistance and launch …
Students are introduced to the physics concepts of air resistance and launch angle as they apply to catapults. This includes the basic concepts of position, velocity and acceleration and their relationships to one another. They use algebra to solve for one variable given two variables.
In this lesson, students learn that light travels in a straight line …
In this lesson, students learn that light travels in a straight line from a light source and that ray diagrams help us understand how an image will be created by a lens. In the accompanying activity, students explore the concepts behind the workings of a pinhole camera.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.