Students begin working on the grand challenge of the unit by thinking …
Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.
Magnetostatics, origin of magnetism in materials, magnetic domains and domain walls, magnetic …
Magnetostatics, origin of magnetism in materials, magnetic domains and domain walls, magnetic anisotropy, reversible and irreversible magnetization processes; hard and soft magnetic materials and magnetic recording. Special topics: magnetism of thin films, surfaces and fine particles; transport in ferromagnets, magnetoresistive sensors, and amorphous magnetic materials.
Students learn about magnets and how they are formed. They investigate the …
Students learn about magnets and how they are formed. They investigate the properties of magnets and how engineers use magnets in technology. Specifically, students learn about magnetic memory storage, which is the reading and writing of data information using magnets, such as in computer hard drives, zip disks and flash drives.
This lesson ties the preceding lessons together and brings students back to …
This lesson ties the preceding lessons together and brings students back to the grand challenge question on MRI safety. During this lesson, students focus on the logistics of magnetic resonance imaging as well as the MRI hardware. Students can then integrate this knowledge with their acquired knowledge on magnetic fields to solve the challenge question.
Students explore the basic magnetic properties of different substances, particularly aluminum and …
Students explore the basic magnetic properties of different substances, particularly aluminum and steel. There is a common misconception that magnets attract all metals, largely due to the ubiquity of steel in metal products. The activity provides students the chance to predict, whether or not a magnet will attract specific items and then test their predictions. Ultimately, students should arrive at the conclusion that iron (and nickel if available) is the only magnetic metal.
In this activity, students will learn about the Richter Scale for measuring …
In this activity, students will learn about the Richter Scale for measuring earthquakes. The students will make a booklet with drawings that represent each rating of the Richter Scale.
In this activity, students use their own creativity (and their bodies) to …
In this activity, students use their own creativity (and their bodies) to make longitudinal and transverse waves. Through the use of common items, they will investigate the different between longitudinal and transverse waves.
Students determine the refractive index of a liquid with a simple technique …
Students determine the refractive index of a liquid with a simple technique using a semi-circular hollow block. Then they predict the refractive index of a material (a Pyrex glass tube) by matching it with the known refractive index of a liquid using the percent light transmission measurement. The homemade light intensity detector uses an LED and multimeter, which are relatively inexpensive (and readily available) compared to commercially available measurement instruments.
Students learn how paper is made. Working together, student teams make their …
Students learn how paper is made. Working together, student teams make their own paper. This activity introduces students to recycling; what it is, its value and benefits, and how it affects their lives.
Students learn about the difference between temperature and thermal energy. They build …
Students learn about the difference between temperature and thermal energy. They build a thermometer using simple materials and develop their own scale for measuring temperature. They compare their thermometer to a commercial thermometer, and get a sense for why engineers need to understand the properties of thermal energy.
What is inside a video game controller? Students learn about simple circuits …
What is inside a video game controller? Students learn about simple circuits and switches as they build arcade controllers using a cardboard box and a MaKey MaKey—an electronic tool and toy that enables users to connect everyday objects to computer programs. Each group uses a joystick and two big push button arcade buttons to make the controller. They follow provided schematics to wire, test and use their controllers—exploring the functionality of the controllers by playing simple computer games like Tetris and Pac-Man. Many instructional photos, a cutting diagram and a wiring schematic are included.
Students control small electric motors with Arduino microcontrollers to make simple sticky-note …
Students control small electric motors with Arduino microcontrollers to make simple sticky-note spinning fans and then explore other variations of basic motor systems. Through this exercise, students create circuits that include transistors acting as switches. They alter and experiment with given basic motor code, learning about the Arduino analogWrite command and pulse width modulation (PWM). Students learn the motor system nuances that enable them to create their own motor-controlled projects. They are challenged to make their motor systems respond to temperature or light, to control speed with knob or soft potentiometers, and/or make their motors go in reverse (using a motor driver shield or an H-bridge). Electric motors are used extensively in industrial and consumer products and the fundamental principles that students learn can be applied to motors of all shapes and sizes.
After reading the story "Dear Mr. Henshaw" by Beverly Cleary, student groups …
After reading the story "Dear Mr. Henshaw" by Beverly Cleary, student groups create alarm systems to protect something in the classroom, just as the main character Leigh does to protect his lunchbox from thieves. Students learn about alarms and use their creativity to devise multi-step alarm systems to protect their lockers, desk, pets or classroom door. Note: This activity can also be done without reading the Cleary book.
Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. …
Computer-controlled servos enable industrial robots to manufacture everything from vehicles to smartphones. For this maker challenge, students control a simple servo arm by sending commands with their computers to Arduinos using the serial communication protocol. This exercise walks students through the (sometimes) unintuitive nuances of this protocol, so by the end they can directly control the servo position with the computer. Once students master the serial protocol, they are ready to build some suggested interactive projects using the computer or “cut the cord” and get started with wireless Bluetooth or XBee communication.
Students learn the components of the rock cycle and how rocks can …
Students learn the components of the rock cycle and how rocks can change over time under the influence of weathering, erosion, pressure and heat. They learn about geotechnical engineering and the role these engineers play in the development of an area of land, the design and placement of new structures, and detection of natural disasters.
Students learn about engineering applications in artistic venues by designing and creating …
Students learn about engineering applications in artistic venues by designing and creating eye masks that each contain three LEDs. They explore parallel circuits with their LEDs, and sew with conductive thread to create light-up displays on their masks, gaining hands-on experience in using engineering technologies as well as custom product design and assembly.
Students use everyday building materials sand, pea gravel, cement and water to …
Students use everyday building materials sand, pea gravel, cement and water to create and test pervious pavement. They learn what materials make up a traditional, impervious concrete mix and how pervious pavement mixes differ. Groups are challenged to create their own pervious pavement mixes, experimenting with material ratios to evaluate how infiltration rates change with different mix combinations.
Students create large-scale models of microfluidic devices using a process similar to …
Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.