Connecticut Mathematics Model Curricula Alignment

Resource Name: HMH Into Math Grade 2

Alignment Grade 2				
Model Unit Name	Model Unit Standards	Resource Unit(s) Number	Resources Lessons	Pacing
This is the title of the unit in the model curricula	These are the standards addressed in the unit	This is the unit(s) that aligns with the model unit from the resource	These are the lessons from the identified units that align to the standards within the model unit	This is the expected number of days for instruction
Fact Strategies (Addition and Subtraction) Up to Twenty and Money Identification	$\begin{aligned} & \text { 2.OA.A. } 1 \\ & \text { 2.OA.B. } 2 \\ & \text { 2.NBT.B. } 9 \\ & \text { 2.MD.C. } 8 \end{aligned}$	Modules 14 \& 15 Module 1 Modules 12, 13 \& 17 Modules 7 \& 8	$\begin{gathered} 14.1,14.2,14.3,14.4,15.1 \\ 15.2,15.3 \\ 1.1,1.2,1.3,1.4,1.5,1.6,1.7 \\ 12.5,12.6,13.4,13.5,17.6 \\ 7.1,7.2,7.3,7.4,8.1,8.2,8.3 \\ \hline \end{gathered}$	2 Weeks 1 Day 1 Week 4 Days 1 Week 2 Days 2 Weeks
Skip Counting and Place Value up to 1,000 Including Time and Money	$\begin{aligned} & \hline \text { 2.NBT.A. } 1 \\ & \text { 2.NBT.A. } 2 \\ & \text { 2.NBT.A. } 3 \\ & \text { 2.NBT.A.4 } \\ & \text { 2.MD.C. } \\ & \text { 2.MD.C. } 8 \\ & \hline \end{aligned}$	Module 4 Module 6 Modules 4 \& 5 Module 6 Module 9 Module 7 \& 8	$\begin{gathered} \hline 4.1,4.2,4.3,4.4,4.5 \\ 6.1 \\ 4.4,5.1,5.2,5.3,5.4,5.5 \\ 6.4,6.5 \\ 9.1,9.2,9.3,9.4 \\ 7.1,7.2,7.3,7.4,8.1,8.2,8.3 \\ \hline \end{gathered}$	1 Week 1 Day 1 Week 1 Day 2 Days 1 Week 2 Weeks
Fluency with Addition and Subtraction within 100 and Problem Solving with Money	$\text { 2.OA.A. } 1$ 2.OA.B. 2 2.NBT.A. 1 2.NBT.B. 5 2.NBT.B. 6 2.NBT.B. 9 2.MD.C. 8	Modules 14 \& 15 Module 1 Module 4 Modules 10, 11, 12 \& 13 Modules 10 \& 13 Modules 12, 13 \& 17 Modules 7 \& 8	$\begin{gathered} 14.1,14.2,14.3,14.4,15.1 \\ 15.2,15.3 \\ 1.1,1.2,1.3,1.4,1.5,1.6,1.7 \\ 4.1,4.2,4.3,4.4,4.5 \\ 10.1,10.2,10.3,11.1,11.2 \\ 11.3,11.4,11.5,12.1,12.2 \\ 12.3,12.4,12.5,12.6,13.1 \\ 13.2,13.3,13.4,13.5 \\ 10.1,10.2,10.3,13.4,13.5 \\ 12.5,12.6,13.4,13.5,17.6 \\ 7.1,7.2,7.3,7.4,8.1,8.2,8.3 \\ \hline \end{gathered}$	2 Weeks 2 Days 1 Week 4 Days 1 Week 4 Weeks 3 Days 1 Week 2 Days 1 Week 2 Days 2 Weeks
Exploring Addition and Subtraction within 1000	$\begin{aligned} & \text { 2.OA.B. } 2 \\ & \text { 2.NBT.A. } 1 \\ & \text { 2.NBT.B. } \end{aligned}$	Module 1 Module 4 Modules 10, 11, 12 \& 13	$\begin{gathered} 1.1,1.2,1.3,1.4,1.5,1.6,1.7 \\ 4.1,4.2,4.3,4.4,4.5 \\ 10.1,10.2,10.3,11.1,11.2 \\ 11.3,11.4,11.5,12.1,12.2 \\ 12.3,12.4,12.5,12.6,13.1 \\ 13.2,13.3,13.4,13.5 \end{gathered}$	1 Week 4 Days 1 Week 4 Weeks 3 Days

	2.NBT.B. 7 2.NBT.B. 8 2.NBT.B. 9	Modules 13, 16 \& 17 Module 6 Modules 12, 13 \& 17	$\begin{gathered} 13.4,13.5,16.1,16.2,16.3 \\ 16.4,17.1,17.2,17.3,17.4 \\ 17.5,17.6 \\ 6.2,6.3 \\ 12.5,12.6,13.4,13.5,17.6 \end{gathered}$	2 Weeks 4 Days 2 Days 1 Week 2 Days
Linear Measurement \& Analyzing and Interpreting Data	$\begin{aligned} & \hline \text { 2.OA.A. } 1 \\ & \\ & \text { 2.MD.A. } 1 \\ & \text { 2.MD.A. } 2 \\ & \text { 2.MD.A. } 3 \\ & \text { 2.MD.A. } 4 \\ & \text { 2.MD.B. } 5 \\ & \text { 2.MD.B. } 6 \\ & \text { 2.MD.D. } 9 \\ & \text { 2.MD.D. } 10 \\ & \hline \end{aligned}$	Modules 14 \& 15 Modules 18 \& 19 Modules 18 \& 19 Modules 18 \& 19 Module 20 Module 20 Module 20 Module 18 Module 3	$\begin{gathered} \text { 14.1, 14.2, 14.3, 14.4, 15.1, } \\ 15.2,15.3 \\ 18.2,18.3,18.7,18.8,19.2 \\ 18.6,19.4 \\ 18.1,18.5,19.1,19.3 \\ 20.5 \\ 20.2,20.4 \\ 20.1,20.2,20.3,20.4 \\ 18.4 \\ 3.1,3.2,3.3,3.4,3.5 \\ \hline \end{gathered}$	2 Weeks 1 Day 1 Week 2 Days 2 Days 4 Days 1 Day 2 Days 4 Days 2 Days 1 Week
Exploring Multiplication	$\begin{aligned} & \text { 2.NBT.A. } 2 \\ & \text { 2.OA.C. } 3 \\ & \text { 2.OA.C. } 4 \\ & \text { 2.G.A. } 2 \end{aligned}$	Module 6 Module 2 Modules 2 \& 22 Module 22	$\begin{gathered} 6.1 \\ 2.1,2.2 \\ 2.3,2.4,2.5,22.1 \\ 22.1 \end{gathered}$	1 Day 2 Days 4 Days 1 Day
Reasoning with Shapes	$\begin{aligned} & \hline \text { 2.G.A. } 1 \\ & \text { 2.G.A. } 3 \end{aligned}$	Module 21 Module 22	$\begin{aligned} & \hline 21.1,21.2,21.3,21.4 \\ & 22.2,22.3,22.4,22.5 \end{aligned}$	1 Week 1 Day 1 Week 1 Day
Scope and Sequence				
If a district uses this resource to implement the state model curriculum for grade 6, the following scope and sequence should be followed to ensure alignment and attention to the progressions of mathematics.				
Order	Unit Number/Title and Lessons	Lesson Objectives	\# of days (assume 1 hour of instruction)	Number of weeks
1	Lesson 1.1 Use Doubles Facts to Add	Use doubles facts as a strategy for finding sums for near doubles facts.	1	
2	Lesson 1.2 Develop Fluency with Addition Using Mental Strategies and Properties	Recall sums for basic facts using strategies and properties.	2	
3	Lesson 1.3 Relate Addition and Subtraction	Use the inverse relationship of addition and subtraction to recall basic facts.	1	

4	Lesson 1.4 Develop Fluency with Subtraction Using Mental Strategies	Recall differences for basic facts using mental strategies.	2	
5	Lesson 1.5 Use the Make a Ten Strategy to Add	Recall sums for addition facts using the make a ten strategy.	1	
6	Lesson 1.6 Use a Tens Fact to Subtract	Find differences on a number line to develop the mental strategy of decomposing to simplify facts.	1	
7	Lesson 1.7 Add 3 Numbers Using Mental Strategies and Properties	Find sums of three addends by applying the Commutative and Associative Properties of Addition.	1	Module 1-1 Week 4 Days
8	Lesson 2.1 Identify Even and Odd Numbers	Classify numbers up to 20 as even or odd.	1	
9	Lesson 2.2 Write Equations to Represent Even Numbers	Write equations with equal addends to represent even numbers.	1	
10	Lesson 2.3 Represent Equal Groups	Represent and solve problems involving equal groups.	1	
11	Lesson 2.4 Add to Find the Total Number of Objects in Arrays	Write equations using repeated addition to find the total number of objects in arrays.	1	
12	Lesson 2.5 Practice with Arrays	Practice writing equations using repeated addition to find the total number of objects in arrays.	1	Module 2-1 Week
13	Lesson 3.1 Collect and Record Data	Collect data in a survey and record that data in a tally chart.	1	
14	Lesson 3.2 Interpret Picture Graphs	Interpret data in picture graphs and use that information to solve problems.	1	
15	Lesson 3.3 Draw Picture Graphs to Represent Data	Draw picture graphs to represent data.	1	

16	Lesson 3.4 Interpret Bar Graphs	Interpret data in bar graphs and use that information to solve problems.	1	
17	Lesson 3.5 Draw Bar Graphs to Represent Data	Draw bar graphs to represent data.	1	Module 3-1 Week
18	Lesson 4.1 Groups Tens as Hundreds	Understand that each group of 10 tens in equivalent to 1 hundred.	1	
19	Lesson 4.2 Understand Three-Digit Numbers	Write three-digit numbers that are represented by groups of tens.	1	
20	Lesson 4.3 Represent Three-Digit Numbers	Use concrete and visual models to represent three-digit numbers.	1	
21	Lesson 4.4 Represent Numbers with Hundreds, Tens, and Ones	Apply place value concepts to write three-digit numbers that are represented by concrete models.	1	
22	Lesson 4.5 Place Value to 1,000	Use place value to describe the values of digits in numbers to 1,000.	1	Module 4-1 Week
23	Lesson 5.1 Use Expanded Form	Write three-digit numbers in expanded form.	1	
24	Lesson 5.2 Use Number Names	Read and write three-digit numbers using number names.	1	
25	Lesson 5.3 Different Ways to Write Numbers	Write three-digit numbers in expanded form and in standard form.	1	
26	Lesson 5.4 Different Ways to Show Numbers	Apply place value concepts to find equivalent representations of three-digit numbers.	1	
27	Lesson 5.5 Read, Write, and Show Numbers	Apply place value concepts to show and write a three-digit number in different ways.	1	Module 5-1 Week
28	Lesson 6.1 Count Within 1,000	Extend counting sequences within 1,000 , counting by 1 s , $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s .	1	

29	Lesson 6.2 Add and Subtract 10 or 100	Identify 10 more, 10 less, 100 more, or 100 less than a given number.	1	
30	Lesson 6.3 Identify and Extend Number Patterns	Extend number patterns by counting by tens or hundreds.	1	
31	Lesson 6.4 Compare Three-Digit Numbers	Solve problems involving number comparisons by using concrete and visual models.	1	
32	Lesson 6.5 Use Symbols to Compare Numbers	Compare three-digit numbers using >, =, and < symbols.	1	Module 6-1 Week
33	Lesson 7.1 Relate Place Value to Coins	Explore the relationship between place value and coins (dimes and pennies).	1	
34	Lesson 7.2 Identify and Find the Value of Coins	Identify and find the total value of combinations of quarters, dimes, nickels, and pennies.	2	
35	Lesson 7.3 Compute the Value of Coin Combinations	Order combinations of coins by value and then find the total value.	1	
36	Lesson 7.4 Show Amounts in Different Ways	Identify and apply the relative values of the different coins to each other.	2	Module 7-1 Week 1 Day
37	Lesson 8.1 Relate the Value of Coins to One Dollar	Show the value of one dollar in different ways using coins.	1	
38	Lesson 8.2 Compute the Value of Dollar Combinations	Use the value of different bill denominations to find the total value for a combination of bills and solve problems involving bills.	1	
39	Lesson 8.3 Solve Problems Involving Money	Use strategies to solve word problems involving money.	2	Module 8-4 Days
40	Lesson 9.1 Tell and Write Time to 5 Minutes	Tell and write time from analog and digital clocks to the nearest five minutes.	1	
41	Lesson 9.2 Different Ways to Tell and Write Time	Read digital and analog clocks, and use phrases to describe times to five minutes.	2	

42	Lesson 9.3 Practice Telling and Writing Time	Practice telling and writing time to the nearest five minutes.	1	
43	Lesson 9.4 Tell and Write Time with A.M. and P.M.	Practice telling and writing time, using a.m. and p.m.	1	Module 9-1 Week
44	Lesson 10.1 Use a Hundred Chart	Use a hundred chart as a toll for two-digit addition and subtraction.	1	
45	Lesson 10.2 Use a Number Line	Use a number line as a tool for two-digit addition and subtraction.	1	
46	Lesson 10.3 Use Counting Strategies	Use a hundred chart and a number line as tools for two-digit addition and subtraction.	1	Module 10-3 Days
47	Lesson 11.1 Decompose Ones to Add	Find a sum by decomposing a one-digit addend to make a two-digit addend a multiple of 10 .	1	
48	Lesson 11.2 Decompose Ones to Subtract	Find a difference by decomposing a one-digit subtrahend to subtract it from a two-digit number.	1	
49	Lesson 11.3 Decompose Numbers to Add	Apply place-value understanding when decomposing numbers to solve two-digit addition.	1	
50	Lesson 11.4 Decompose Addends as Tens and Ones	Apply place-value understanding when decomposing numbers to solve two-digit addition.	1	
51	Lesson 11.5 Decompose Numbers to Subtract	Apply place-value understanding when decomposing numbers to solve two-digit subtraction.	1	Module 11-1 Week
52	Lesson 12.1 Represent Regrouping for Addition	Represent two-digit addition with regrouping ones as tens using visual models.	1	

53	Lesson 12.2 Represent Regrouping for Subtraction	Represent two-digit subtraction with regrouping 1 ten as 10 ones.	1	
54	Lesson 12.3 Represent and Record Two-Digit Addition	Use place-value charts to represent and record two-digit addition.	2	
55	Lesson 12.4 Represent and Record Two-Digit Subtraction	Use concrete models to represent two-digit subtraction and connect the concrete model to the subtraction algorithm.	2	
56	Lesson 12.5 Add Two-Digit Numbers	Understand how to record two-digit addition with and without regrouping.	1	
57	Lesson 12.6 Subtract Two-Digit Numbers	Understand how to record two-digit subtraction with and without regrouping.	1	Module 12-1 Week 3 Days
58	Lesson 13.1 Rewrite Addition Problems	Rewrite addition problems given in horizontal form as vertical addition algorithm and find the sum.	1	
59	Lesson 13.2 Rewrite Subtraction Problems	Rewrite subtraction problems given in horizontal form as vertical subtraction algorithm and find the difference.	1	
60	Lesson 13.3 Use Addition and a Number Line to Subtract	Use the relationship between addition and subtraction to find the difference.	1	
61	Lesson 13.4 Add 3 Two-Digit Numbers Using Strategies and Properties	Use strategies of addition to find the sum of 3 two-digit numbers.	2	
62	Lesson 13.5 Add 4 Two-Digit Numbers Using Strategies and Properties	Use strategies of addition to find the sum of 4 two-digit numbers.	2	Module 13-1 Week 2 Days
63	Lesson 14.1 Use Drawings to Represent Addition and Subtraction Situations	Use bar models to represent and solve addition and subtraction problems.	2	

64	Lesson 14.2 Use Equations to Represent Addition and Subtraction Situations	Use equations to represent and solve addition and subtraction problems.	2	
65	Lesson 14.3 Use Drawings and Equations to Represent Two-Digit Addition	Use drawings to write equations to represent addition situations.	2	
66	Lesson 14.4 Use Drawings and Equations to Represent Two-Digit Subtraction	Use drawings to write equations to represent subtraction situations.	2	Module 14-1 Week 3 Days
67	Lesson 15.1 Solve Addition Word Problems	Represent addition situations with equations using a symbol for the unknown.	1	
68	Lesson 15.2 Solve Subtraction Word Problems	Represent subtraction situations with equations using a symbol for the unknown.	1	
69	Lesson 15.3 Solve Multistep Addition and Subtraction Problems	Evaluate word problems to decide what operations to use to solve multistep problems.	2	Module 15-4 Days
70	Lesson 16.1 Use Drawings to Represent Three-Digit Addition	Draw quick pictures to represent three-digit addition.	1	
71	Lesson 16.2 Decompose Three-Digit Addends	Apply place-value concepts when decomposing numbers to solve three-digit addition problems.	1	
72	Lesson 16.3 Represent Regrouping for Addition	Record three-digit addition using the standard algorithm with possible regrouping of ones or tens.	1	
73	Lesson 16.4 Add Three-Digit Numbers	Record three-digit addition using the standard algorithm with possible regrouping of both ones and tens.	1	Module 16-4 Days
74	Lesson 17.1 Represent Three-Digit Subtraction	Solve problems involving three-digit subtraction by building concrete models.	1	

75	Lesson 17.2 Represent Regrouping for Subtraction	Record three-digit subtraction using the standard algorithm with possible regrouping of hundreds.	1	
76	Lesson 17.3 Subtract Three-Digit Numbers	Record three-digit subtraction using the standard algorithm with possible regrouping of both hundreds and tens,	1	
77	Lesson 17.4 Represent Regrouping with Zeros	Show regrouping for subtraction with three-digit numbers with zeros.	1	
78	Lesson 17.5 Regrouping with Zeros	Record three-digit subtraction using the standard algorithm when there are zeros in the minuend.	1	
79	Lesson 17.6 Add and Subtract Three-Digit Numbers	Record three-digit addition and three-digit subtraction using the standard algorithm with possible regrouping in all place-value positions.	1	Module 17-1 Week 1 Day
80	Lesson 18.1 Estimate Lengths Using Inches	Estimate the lengths of objects by mentally partitioning the lengths into inches.	1	
81	Lesson 18.2 Make and Use a Ruler	Make and use a paper ruler to measure the lengths of objects.	2	
82	Lesson 18.3 Measure to the Nearest Inch	Measure the lengths of objects to the nearest inch using an inch ruler.	1	
83	Lesson 18.4 Make Line Plots to Show Measurement Data	Measure the lengths of objects and use a line plot to display the measurement data.	2	
84	Lesson 18.5 Estimate Lengths Using Feet	Estimate the lengths of objects by mentally partitioning the lengths into feet.	1	

85	Lesson 18.6 Measure in Inches and Feet	Measure the lengths of objects in both inches and feet to explore the inverse relationship between size and number of units.	1	
86	Lesson 18.7 Measure to the Nearest Yard	Measure the lengths of objects to the nearest yard using a yardstick.	2	
87	Lesson 18.8 Choose Appropriate Tools	Select appropriate tools for measuring different lengths.	1	Module 18-2 Weeks 1 Day
88	Lesson 19.1 Estimate Lengths Using Centimeters	Estimate lengths of objects in centimeters by comparing them to known lengths.	1	
89	Lesson 19.2 Measure to the Nearest Centimeter	Measure lengths of objects to the nearest centimeter using a centimeter ruler.	1	
90	Lesson 19.3 Estimate Lengths Using Meters	Estimate the lengths of objects in meters.	1	
91	Lesson 19.4 Measure in Centimeters and Meters	Measure the lengths of objects in both centimeters and meters to explore the inverse relationship between size and number of units.	1	Module 19-4 Days
92	Lesson 20.1 Relate Inches to a Number Line	Explore the relationship between inch units on an inch ruler or a yardstick and units on a number line and use an inch ruler or a yardstick to solve addition and subtraction problems.	1	
93	Lesson 20.2 Add and Subtract Lengths in Inches	Solve addition and subtraction problems involving the lengths of objects in inches by using a number line diagram.	1	
94	Lesson 20.3 Relate Centimeters to a Number Line	Explore the relationship between units on a centimeter ruler or a meter stick and units on a number	1	

		line and use a centimeter ruler or a meter stick to solve addition and subtraction problems.		Solve addition and subtraction problems involving the lengths of objects in centimeters by using a number line diagram.

		third of, or a fourth of a whole.		
105	Lesson 22.5 Different Ways to Show Equal Shares	Use visual models to show that equal shares of the same wholes do not need to have the same shape.	Module 22-1 Week 2 Days	

Supports of Diversity, Equity and Inclusion

Please provide any information relative to supporting culturally responsive instruction, multi-language learners, and students with disabilities

Into Math is a comprehensive instructional program that is specifically designed to support the diverse needs of all students, including those who are culturally and linguistically diverse, as well as those who need more supports. Into Math is built on a foundation of research-based instructional strategies and provides a wealth of resources for teachers to support the learning of all students.

One of the key features of Into Math is the inclusion of learning mindset prompts, which encourage students to develop a growth mindset and believe in their ability to succeed in mathematics. These prompts are integrated throughout the program and provide students with the tools they need to persevere through challenges and become confident and successful learners.

In addition to the learning mindset prompts, Into Math also includes guiding questions and supports for teachers to identify students who may require additional assistance or support. This allows teachers to provide targeted in time support and interventions to those students who need it most. Detailed information is provided to teachers about students' prior learning, current development, and future connections to be made, which enables teachers to differentiate instruction effectively.

A strong emphasis is placed on language development and provides teachers with a variety of resources, such as Three Reads, which support sense making, and suggestions for connecting language to various concepts, as well as key academic vocabulary for each module. These resources are designed to help teachers support the language development of multilingual learners and ensure that they have the language skills they need to access the mathematics curriculum.

Additionally, Into Math is designed to be culturally responsive and inclusive to all students. It provides teachers with resources and strategies to address cultural and linguistic diversity, and strategies for building positive relationships with students. This approach to instruction acknowledges and values the cultures, languages, and backgrounds of all students and helps to create an inclusive and equitable learning environment.

Into Math offers tiered interventions, additional practice, and math center options to support students with various learning needs. These interventions are designed to provide students with additional support and practice in areas where they may be struggling, and the math center options provide students with hands-on, interactive activities that help to make math more engaging and accessible.

