Model Curricula Alignment Template for Mathematics

Resource Name: Imagine Learning Illustrative Mathematics Grade 1

		Grade 1, Unit 1, Lesson 2: Explore Expressions and Sums	
	10AC6	Grade 1, Unit 1, Lesson 3: Add 1 or 2	
		Grade 1, Unit 1, Lesson 5: Explore Addition and Subtraction	
	1.OA D. 7	Grade 1, Unit 2, Lesson 4: Result or Change Unknown	14 Lessons
		Grade 1, Unit 2, Lesson 14: Compare with Addition and Subtraction	
	1.04. . 8	Grade 1, Unit 2, Lesson 8: Shake, Spill and Cover	26 Lessons
		Grade 1, Unit 3, Lesson 5: Find the Difference	
		Grade 1, Unit 1, Lesson 8: Sort and Count Shape Cards	
	1.MD.C. 4	Grade 1, Unit 1, Lesson 13: Questions About Data	11 Lessons
Counting and P			
	1 NBT A 1	Grade 1, Unit 4, Lesson 2: Match Representations of Tens	1
		Grade 1, Unit 4, Lesson 1: Count Large Collections	
	1	Grade 1, Unit 4, Lesson 6: Count Larger Collections	s
		Grade 1, Unit 4, Lesson 23: Two-Digit Numbers in Our World	
		Grade 1, Unit 4, Lesson 14: Let's Compare	
		Grade 1, Unit 4, Lesson 15: Greater Than, Less Than	Lessons
	1.NBT.C. 5	Grade 1, Unit 4, Lesson 12: Mentally Add and Subtract Tens	14 Lessons

		Grade 1, Unit 5, Lesson 4: More Addition and Subtraction with Tens	
Exploring Addition and Subtraction Within 100			
	1.NBT.C. 4	Grade 1, Unit 4, Lesson 11: Add Tens to Two-digit Numbers	40 Lessons
		Grade 1, Unit 5: Lesson 2: How Did You Add?	
	1.NBT.C. 6	Grade 1, Unit 4, Lesson 3: Addition and Subtraction with Tens	9 Lessons
		Grade 1, Unit 4, Lesson 9: Show Me Your Number	
	1.OA.B. 3	Grade 1, Unit 3, Lesson 19: Methods of Addition Within 20	9 Lessons
		Grade 1, Unit 3, Lesson 4: Sums of 10	
	1.OA.C. 5	Grade 1, Unit 3, Lesson 24: Relate Counting to Addition and Subtraction	38 Lessons
		Grade 1, Unit 3, Lesson 25: How Do You Want to Subtract?	
	1.OA.D. 7	Grade 1, Unit 2, Lesson 9: Compare Story Problems	14 Lessons
		Grade 1, Unit 5, Lesson 11: How Did You Do That?	
	1.NBT.A. 1	Grade 1, Unit 4, Lesson 2: Match Representations of Tens	31 Lessons
		Grade 1, Unit 6, Lesson 8: Groups Up to 110	
	1.NBT.B. 2	Grade 1, Unit 4, Lesson 3: Addition and Subtraction with Tens	20 Lessons
		Grade 1, Unit 4, Lesson 8: Different Representations of Tens and On	

Defining Attributes of 2-D and 3-D Shapes

	1.G.A. 1	Grade 1, Unit 7, Lesson 4: Draw Flat Shapes	5 Lessons
		Grade 1, Unit 7, Lesson 5: Some Triangles, All Triangles	
	1.G.A. 2	Grade 1, Unit 7, Lesson 2: Build Shapes from Other Shapes	5 Lessons
		Grade 1, Unit 7, Lesson 7: Put Together Flat Shapes	
Partitioning Circles and Rectangles			
	1.G.A. 3	Grade 1, Unit 7, Lesson 9: Equal Pieces	3 Lessons
		Grade 1, Unit 7, Lesson 10: One of the Pieces, All of the Pieces	
Measuring Length with Non-Standard Units			
	1.MD.A. 1	Grade 1, Unit 6, Lesson 1: Compare Lengths	4 Lessons
		Grade 1, Unit 6, Lesson 2: Compare the Lengths of Objects Indirectly	
	1.MD.A. 2	Grade 1, Unit 6, Lesson 5: Measure with Connecting Cubes	8 Lessons
		Grade 1, Unit 6, Lesson 7: Measure Length with Different Length Units	

Unit 2: Addition and Subtraction Story Problems			23-24 Days of Instruction -- 5 Weeks
	Add To and Take From Story Problems		
	Lesson 1	Represent and solve Add To and Take From, Result Unknown problems in a way that makes sense to them	
		Write an expression to represent the action in a story problem	
	Lesson 2	Solve Add To and Take From, Result Unknown problems	
		Write addition or subtraction equations to represent a story problem and orally explain why it matches	
	Lesson 3	Identify the answer to a story problem in an equation	
		Solve Add To, Change Unknown story problems in a way that makes sense to them	
	Lesson 4	Solve Add To, Result or Change Unknown, and Take From, Result Unknown story problems	
		Write an equation and explain why it matches a story problem	
	Lesson 5	Add and subtract within 10	
		Tell and solve math stories based on a representation	
	Put Together/Take Apart Story Problems		
	Lesson 6	Solve Put Together, Total Unknown story problems in a way that makes sense to them	
		Write an equation and explain why it matches a story problem	
	Lesson 7	Solve Put Together/Take Apart, Both Addends Unknown story problems in a way that makes sense to them	
		Write an equation and explain why it matches a story problem	
	Lesson 8	Relate different equations to the same story problem	
		Solve Put Together/Take Apart, Addend Unknown story problems in a way that makes sense to them	

	Lesson 19	Solve a variety of story problem types	
		Write two different equations to match a story problem	
	Lesson 20	Write a story problem to match an equation	
	Lesson 21	Add and subtract within 10 in a way that makes sense to them	
	Lesson 22 - Optional	Use data to ask and answer questions	
		Use data to write equations	
		Write equations that represent a story problem	
Unit 3: Adding and Subtracting Within 20			$\begin{gathered} \text { 29-30 Days of } \\ \text { Instruction -- } 6 \text { Weeks } \end{gathered}$
	Develop Fluency with Addition and Subtraction within 10		
	Lesson 1	Add within 10	
		Identify known sums within 10	
	Lesson 2	Understand and apply counting on as a method for addition	
		Understand and use the commutative property	
	Lesson 3	Interpret equations with expressions on both sides of the equal sign	
		Understand and use the commutative property	
	Lesson 4	Look for and make use of patterns in addition expressions that have a sum of 10	
	Lesson 5	Use the relationship between addition and subtraction to find the differences within 10	
	Lesson 6	Solve Add To and Put Together story problems with unknowns in all positions	
	Lesson 7	Add within 10	
	Add and Subtract using Ten as a Unit		
	Lesson 8	Compose and decompose teen numbers into 1 ten plus some number of ones	

		Understand 10 ones as a unit called a ten
	Lesson 9	Compose and decompose teen numbers into 1 ten and some number of ones
		Find the value that makes an addition equation true, where one addend is 10
	Lesson 10	Find the value that makes an equation true where the total is a teen number
		Use the relationship between addition and subtraction to find missing values
	Lesson 11	Add within 20 when one addend is a teen number
	Lesson 12	Add and subtract single-digit numbers from teen numbers without composing or decomposing a ten
	Lesson 13	Solve Take From, Result or Change Unknown story problems
	Lesson 14	Add and subtract within 20
	Add within 20	
	Lesson 15	Solve story problems within 20 with three addends, two of which make a ten
	Lesson 16	Make sense of equations with addition expressions on both sides of the equal sign (For example, $3+6+7=10+6)$
		Use the associative property to make a ten when adding three numbers
	Lesson 17	Analyze methods for adding within 20 that involve making a ten
		Look for and use patterns in addition expressions to add within 20
	Lesson 18	Look for and use patterns in addition expressions to add within 20
		Make a ten to find the sum of two numbers within 20
	Lesson 19	Analyze methods for adding within 20

		Use addition methods flexibly to find sums based on the numbers in a given problem	
	Lesson 20	Solve story problems with three addends	
		Students add two and three numbers within 20	
	Lesson 21	Students write equations with three addends	
	Subtract within 20		
	Lesson 22	Subtract within 20 in a way that makes sense to them	
	Lesson 23	Use the unit of a ten to find differences within 20	
	Lesson 24	Analyze and use counting up and taking away as methods to subtract	
	Lesson 25	Use subtraction methods flexibly to find differences based on the numbers in a given problem	
	Lesson 26	Solve addition and subtraction story problems with unknowns in all positions	
	Lesson 27	Add and subtract within 20	
		Add within 20 with three addends	
	Lesson 28 Optiona	Write and solve story problems	
Unit 4: Numbers	s to 99		23-25 Days of
	Units of Ten		
	Lesson 1	Count up to 60 objects (multiples of 10) in a way that makes sense to them	
	Lesson 2	Interpret different base-ten representations of multiples of 10	
	Lesson 3	Add and subtract 10 from multiples of 10	
	Lesson 4	Add and subtract multiples of 10 from multiples of 10	
	Lesson 5	Add and subtract multiples of 10 from multiples of 10	
	Lesson 5	Add and subtract within 20	

Tens and Ones	
Lesson 6	Count up to 60 objects in a way that makes sense to them
Lesson 7	Read two-digit numbers
	Understand any two-digit number as composed of tens and ones
Lesson 8	Interpret different base-ten representations of two-digit numbers (drawings, words, and addition expressions)
Lesson 9	Represent the base-ten structure of two-digit numbers with drawings, words, and addition expressions
Lesson 10	Write numbers to represent different base-ten representations
Lesson 11	Add a two-digit number and a multiple of 10
Lesson 12 - Optional	Mentally find 10 more or 10 less than a number
Lesson 13	Add and subtract within 20
	Add tens to two-digit numbers
	Count and represent a collection
Compare Numbers to 99	
Lesson 14	Compare two-digit numbers based on the value of the tens and ones digits
	Use "greater than" and "less than" to describe comparisons
Lesson 15	Interpret comparison statements that use <, >, or =
	Understand that the > symbol means greater than and the < symbol means less than
Lesson 16	Read and write comparisons using <, >, or =
Lesson 17	Compare and order numbers based on the value of the tens and ones digits
Lesson 18	Count objects in a collection and record the count
	Create, compare, and order two-digit numbers

		Make sense of equations that represent addition methods	
	Lesson 7	Add a one-digit and a two-digit number and recognize when a new ten will be composed	
		Write equations that represent addition methods	
	Lesson 8	Add within 100	
	Make a Ten: Add Within 100		
	Lesson 9	Add 2 two-digit numbers within 100, with composing a ten, in a way that makes sense to them	
	Lesson 10	Add two-digit numbers by adding tens and tens and ones and ones	
	Lesson 11	Add 2 two-digit numbers using methods based on place value and properties of operations	
		Make sense of equations that represent addition methods	
	Lesson 12	Add 2 two-digit numbers using methods based on place value and properties of operations	
		Write equations to represent addition methods	
	Lesson 13	Add numbers within 100	
	Lesson 14 - Optional	Add 2 two-digit numbers within 100 with composing a ten, in a way that makes sense to them	
Unit 6: Length Measurements Within 120 Units			18-19 Days of Instruction -- 4 Weeks
	From Direct to Indirect Comparisons		
	Lesson 1	Compare the length of objects by lining up the endpoints	
		Order three objects by length and use language such as "shorter than" and "longer than" to describe the relationship between the lengths	
	Lesson 2	Compare the length of two objects indirectly by using a third object	
	Lesson 3	Choose and use objects to compare lengths of other objects indirectly	
	Lesson 4	Add within 100	

		Compare addition and subtraction expressions to 20	
	Measure by Iterating up to $\mathbf{1 2 0}$ Length Units		
	Lesson 5	Measure objects in connecting cube side lengths using connecting cube towers	
		Understand that a connecting cube tower with x cubes in it can be described as being " x cubes long"	
	Lesson 6	Measure length by iterating same-size length units without gaps or overlaps	
	Lesson 7	Measure lengths of objects using different length units	
		Understand that the number associated with a length depends on the chosen length unit	
	Lesson 8	Measure length and count the number of length units for quantities up to 110	
		Read numbers to 110	
	Lesson 9	Measure length and determine an efficient way to count the number of length units up to 120	
		Read and write numbers to 120	
	Lesson 10	Add within 100	
		Measure length by iterating same-size length units without gaps or overlaps	
	All Kinds of Story Problems		
	Lesson 11	Use addition and subtraction to solve story problems about measurement	
	Lesson 12	Solve Compare story problems with unknowns in all positions	
	Lesson 13	Solve Take From story problems, with unknowns in all positions, in a way that makes sense to them	
	Lesson 14	Analyze story problems with unknowns in all positions	
		Match addition and subtraction equations to story problems	

	Lesson 15	Use addition and subtraction to solve story problems with unknowns in all positions	
		Write equations to represent story problems	
	Lesson 16	Count groups of up to 120 objects and write a number to represent them	
		Measure length by iterating same-size length units without gaps or overlaps	
		Read and write numbers to 120	
	Lesson 17 - Optional	Analyze and solve Compare story problems with unknowns in all positions	
		Write equations to represent story problems	
Unit 7: Geometry and Time			19 Days of Instruction -- 4 Weeks
	Flat and Solid Shapes		
	Lesson 1	Sort three-dimensional shapes in a way that makes sense to them	
		Use their own language to describe three-dimensional shapes	
	Lesson 2	Compose shapes from other three-dimensional shapes	
	Lesson 3	Sort two-dimensional shapes in a way that makes sense to them	
		Use their own language to describe two-dimensional shapes	
	Lesson 4	Draw two-dimensional shapes based on shared attributes	
		Use increasingly precise language to describe the attributes of twodimensional shapes	
	Lesson 5	Draw triangles based on their defining attributes	
		Identify defining and non-defining attributes of triangles	
	Lesson 6	Draw squares and rectangles based on defining attributes	
		Identify defining and non-defining attributes of rectangles and squares	
		Recognize a square as a special rectangle	
	Lesson 7	Compose shapes in different ways	

Please provide any information relative to supporting culturally responsive instruction, multi-language learners, and students with

 disabilities
Review Site Information:

URL: review-ct.ilclassroom.com
Username: CT@example.com
Password: teacher

Culturally Responsive Instruction:

Illustrative Mathematics includes culturally relevant materials and culturally responsive teaching and instructional practices. Materials are inclusive of a variety of cultures and ethnicities and are free from bias in the portrayal of ethnic groups, gender, age, class, cultures, religions, and people with disabilities.
We address racial, cultural, and religious bias in the following ways:

- The materials contain racial/ethnic balance in the main characters and illustrations.
- Minorities are represented as central figures in text and illustrations.
- Minority figures reflect qualities such as leadership, intelligence, imagination, and courage.
- The materials provide an opportunity for a variety of racial, ethnic, and cultural perspectives.
- The vocabulary or depiction of racism is avoided (i.e., insulting overtones).
- Race/culture stereotyping language is avoided.
- Biographical or historical content includes minority figures and their discoveries and contributions to society.

Multi-Language Learners:

In a problem-based mathematics classroom, sense-making and language are interwoven. Mathematics classrooms are language-rich, and therefore language demanding learning environments for every student. The linguistic demands of doing mathematics include reading, writing, speaking, listening, conversing, and representing (Aguirre \& Bunch, 2012). Students are expected to say or write mathematical explanations, state assumptions, make conjectures, construct mathematical arguments, and listen to and respond to the ideas of others. In an effort to advance the mathematics and language learning of all students, the materials purposefully engage students in sense-making and using language to negotiate meaning with their peers. To support students who are learning English in their development of language, this curriculum includes instruction devoted to fostering language development alongside mathematics learning, fostering language-rich environments where there is space for all students to participate.

This interwoven approach is grounded in four design principles that promote mathematical language use and development:

Principle 1. Support sense-making: Scaffold tasks and amplify language so students can make their own meaning. Students need multiple opportunities to talk about their mathematical thinking, negotiate meaning with others, and collaboratively solve problems with targeted guidance from the teacher. Teachers can make language more accessible by amplifying rather than simplifying speech or text. Simplifying includes avoiding the use of challenging words or phrases. Amplifying means anticipating where students might need support in understanding concepts or mathematical terms and providing multiple ways to access them.

Principle 2. Optimize output: Strengthen opportunities for students to describe their mathematical thinking to others, orally, visually, and in writing. All students benefit from repeated, strategically optimized, and supported opportunities to articulate mathematical ideas into linguistic expression, to communicate their ideas to others. Opportunities for students to produce output should be strategically optimized for both (a) important concepts of the unit or course, and (b) important disciplinary language functions (for example, explaining reasoning, critiquing the reasoning of others, making generalizations, and comparing approaches and representations).

Principle 3. Cultivate conversation: Strengthen opportunities for constructive mathematical conversations. Conversations are back-and-forth interactions with multiple turns that build up ideas about math. Conversations act as scaffolds for students developing mathematical language because they provide opportunities to simultaneously make meaning, communicate that meaning, and refine the way content understandings are communicated. During effective discussions, students pose and answer questions, clarify what is being asked and what is happening in a problem, build common understandings, and share experiences relevant to the topic. Meaningful conversations depend on the teacher using activities and routines as opportunities to build a classroom culture that motivates and values efforts to communicate.

Principle 4. Maximize meta-awareness: Strengthen the meta-connections and distinctions between mathematical ideas, reasoning,
and language. Meta-awareness, consciously thinking about one's own thought processes or language use, develops when students consider how to improve their communication and reasoning about mathematical concepts. When students are using language in ways that are purposeful and meaningful for themselves, in their efforts to understand-and be understood by-each other, they are motivated to attend to ways in which language can be both clarified and clarifying. Students learning English benefit from being aware of how language choices are related to the purpose of the task and the intended audience, especially if oral or written work is required. Both metacognitive and metalinguistic awareness are powerful tools to help students self-regulate their academic learning and language acquisition.

These design principles and related mathematical language routines, described below, ensure language development is an integral part of planning and delivering instruction. Moreover, they work together to guide teachers to amplify the most important language that students are expected to know and use in each unit.

Mathematical Language Routines

Mathematical Language Routines (MLRs) are instructional routines that provide structured but adaptable formats for amplifying, assessing, and developing students' language. The MLRs included in this curriculum were selected because they simultaneously support students' learning of mathematical practices, content, and language. They are particularly well-suited to meet the needs of linguistically and culturally diverse students who are learning mathematics while simultaneously acquiring English. These routines are flexible and can be adapted to support students at all stages of language development in using and improving their English and disciplinary language use.
These routines are included in the Curriculum Guide and noted below:

- MLR 1: Stronger and Clearer Each Time
- MLR 2: Collect and Display
- MLR 3: Clarify, Critique, Correct
- MLR 4: Information Gap
- MLR 5: Co-Craft Questions
- MLR 6: Three Reads
- MLR 7: Compare and Connect
- MLR 8: Discussion Supports

MLRs are included in select activities in each unit to provide all students with explicit opportunities to develop mathematical and academic language proficiency. These "embedded" MLRs are described in the teacher notes for the lessons in which they appear.

Each lesson also includes optional, suggested MLRs that can be used to support access and language development for English learners, based on the language demands students will encounter. They are described in the activity narrative, under the heading "Access for English Learners." Teachers can use the suggested MLRs and language strategies as appropriate to provide students with access to an activity without reducing the mathematical demand of the task. When using these supports, teachers should take into account the language demands of the specific activity and the language needed to engage the content more broadly, in relation to their students' current ways of using language to communicate ideas as well as their students' English language proficiency. Using these supports can help maintain student engagement in mathematical discourse and ensure that struggle remains productive. All of the supports are designed to be used as needed, and use should fade out as students develop understanding and fluency with the English language.

In addition to the comprehensive pedagogical design of the program, Spanish translations are available for the educator components, including teacher slides, and the student components, including the student workbook (print version).
Materials are also available in Spanish as follows:

K-5	6-8	AGA
- Print: Student Workbooks - eBook/PDF: Student Workbooks, Teacher Resource Pack, Teacher Guide (student facing text only, teacher text in English) - Spanish Lesson Presentations Other Materials (no student responses) - Task Statements (PDF) - Cool-Down (PDF) - Practice Problems (PDF) - Unit Assessments (PDF and digital) - Section Checkpoints (PDF) - Family Support Material (PDF) - Center Materials (PDF) - Blackline Masters (PDF) - Glossary entries	6-8 Courses Only (Not Accelerated) - Print: Student Workbooks - eBook/PDF: Student Workbooks Other Materials (no student responses) - Task Statements (PDF) - Cool-Down (PDF) - Practice Problems (PDF) - Unit Assessments, Option B (PDF) - Blackline Masters (PDF) - Family Support Material (PDF) - Glossary entries	Algebra 1 Only - eBook/PDF: Student Workbooks - Print: Student Workbooks - Available for BTS 2023 Other Materials (no student responses) - Task Statements (PDF) - Cool-Down (PDF) - Practice Problems (PDF) - Unit Assessments (PDF) - Modeling Prompts - Blackline Masters (PDF) - Family Support Material (PDF) - Glossary entries

Exceptional Learners:

Imagine Learning Illustrative Mathematics materials empower all students with activities that capitalize on their existing strengths and abilities to ensure that all learners can participate meaningfully in rigorous mathematical content. Lessons support a flexible approach to instruction and provide teachers with options for additional support to address the needs of a diverse group of students, positioning all learners as competent, valued contributors. When planning to support access, teachers should consider the strengths and needs of their particular students.
Each lesson is carefully designed to maximize engagement and accessibility for all students. Purposeful design elements that support access for all learners, but that are especially helpful for students with disabilities, include:

Lesson Structures are Consistent

The structure of every lesson is the same: warm-up, activities, synthesis, cool-down. By keeping the components of each lesson similar from day to day, the flow of work in class becomes predictable for students. This reduces cognitive demand and enables students to focus on the mathematics at hand rather than the mechanics of the lesson.

Concepts Develop from Concrete to Abstract

Mathematical concepts are introduced simply, concretely, and repeatedly, with complexity and abstraction developing over time. Students begin with concrete examples, and transition to diagrams and tables before relying exclusively on symbols to represent the mathematics they encounter.

Individual to Pair, or Small Group to Whole Class Progression

Providing students with time to think through a situation or question independently before engaging with others allows students to carry the weight of learning, with support arriving just in time from the community of learners. This progression allows students to first activate what they already know, and continue to build from this base with others.

Opportunities to Apply Mathematics to Real-World Contexts

Giving students opportunities to apply the mathematics they learn clarifies and deepens their understanding of core math concepts and skills and provides motivation and support. Mathematical modeling is a powerful activity for all students, but especially students with disabilities. Each unit has a culminating activity designed to explore, integrate, and apply all the big ideas of the unit. Centering instruction on these contextual situations can provide students with disabilities an anchor on which to base their mathematical understandings.

Supplemental instructional strategies that can be used to increase access, reduce barriers and maximize learning are included in each lesson, listed in the activity narratives under "Access for Students with Disabilities." Each support is aligned to the Universal Design for

Learning Guidelines and based on one of the three principles of UDL, to provide alternative means of engagement, representation, or action and expression. These supports provide teachers with additional ways to adjust the learning environment so that students can access activities, engage in content, and communicate their understanding. Supports are tagged with the areas of cognitive functioning they are designed to address to help teachers identify and select appropriate supports for their students. Designed to facilitate access to Tier 1 instruction by capitalizing on student strengths to address challenges related to cognitive functions or disabilities, these strategies and supports are appropriate for any students who need additional support to access rigorous, gradelevel content.

Teachers are encouraged to use what they know about their students' IEPs, strengths and challenges, and a UDL approach to ensure access.

There are embedded supports for exceptional students in most lessons. Teachers will find these in the Teaching Notes section. As of June 2020, Illustrative Mathematics 6-8 student facing materials meet Section 508 compliance standards, meaning that students can use assistive technology to navigate the site. Illustrative Mathematics K-5 digital materials were added during the 21-22 School Year and are 508 compliant as well. Outlined in the Curriculum Guide, there are features, supports, and strategies available.

The curriculum authors drew heavily on the UDL framework in the design of these materials. A number one design principle of the curriculum is "Access for all." This foundational principle draws from the UDL framework and shapes the instructional goals, recommended practices, lesson plans, and assessments to support a flexible approach to instruction, ensuring all students have an equitable opportunity to learn.

Imagine Learning software is browser-based so it will work with any browser-based text-to-speech tools. Fonts can be adjusted in type and size. Non-text navigation elements can be adjusted in size. Math equation editing is available on assessment items and practice problems.

Imagine Learning can provide a NIMAS-compatible version of Illustrative Mathematics content. These files may be used for the production of alternate formats as permitted under the law for students with disabilities.

