Updating search results...

CSDE K-8 Model Science

3 affiliated resources

Search Resources

View
Selected filters:
Connecticut Model Science for Grade 6
Read the Fine Print
Educational Use
Rating
0.0 stars

​ OpenSciEd Demo Video ​OpenSciEd Scope & Sequence VideoCSDE Model Curricula Quick Start Guide Equitable and Inclusive Curriculum  The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: Using 3-Dimesional design pedagogy, Connecticut’s NGSS employ: Science/Engineering Practices, Disciplinary Core Ideas (DCI’s) and Crosscutting Concepts that are used to make up Student Expectations: ​Each year, students in Connecticut should be able to demonstrate greater capacity for connecting knowledge across, and between, the physical sciences, life sciences, earth and space sciences, and engineering design. During Grade 6, students will begin to form deeper connections between concepts previously learned in grades K–5, such as collecting evidence and drawing conclusions, understanding relationships between objects, and critical thinking that leads to designing effective solutions for problems. Upon completion of Grade 6, students should have a deeper understanding of: • Physical and chemical interactions that affect the world around us;• Factors that affect organism survival and reproduction; • Factors that influence the Earth and our solar system including important concepts regarding climate and changes in climate/weather; and • How to optimize design solutions.Aligned Core Resources:Core resources is a local control decision.  Ensuring alignment of resources to the standards is critical for success. The CSDE has identified OpenSciEd as a highly aligned core resource after a rigorous review process. Additional Course Information: NGSS has unique features. To better understand the make-up of NGSS visit the following website for a more detailed break-down of the CT Science standards from which this curriculum was based. Nextgenscience Assessment Information:To support teachers with being able to use the OpenSciEd instructional materials, a set of professional learning resources has been developed that accompany each unit. All of the resources can be accessed by adding them to your Google Drive or by downloading into Microsoft Office documents from the Google Drive folder using the links below. To access the student and teacher versions of these units, visit the Instructional Materials Page.Additionally, the Connecticut State Department of Education has developed NGSS interim Assessment blocks specific to the grade 6-8 grade band. These can be accessed through the CSDE Website in the Performance Office tab.ELA/Math Transferable Skills Addressed in the Course: The following Practices Venn Diagram illustrates the connections and commonalities in the major content areas. This diagram attempts to cluster practices and capacities that have similar tenets and/or significant overlaps in the student expectations. Likewise, we have placed practices and capacities within the disciplinary domains if there was not a significant overlap or relationship to another discipline. One could argue certain practices/capacities could be placed in other positions within the Venn diagram. These placements are not definitive and the intention of the standards documents may not have conceptualized the three disciplinary areas In this manner. ​ 

Subject:
Life Science
Physical Science
Space Science
Material Type:
Full Course
Provider:
CT State Department of Education
Date Added:
05/02/2022
Connecticut Model Science for Grade 7
Read the Fine Print
Educational Use
Rating
0.0 stars

OpenSciEd Demo VideoOpenSciEd Scope & Sequence VideoCSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum  The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: Using 3-Dimesional design pedagogy, Connecticut’s NGSS employ: Science/Engineering Practices, Disciplinary Core Ideas (DCI’s) and Crosscutting Concepts that are used to make up Student Expectations:Each year, students in Connecticut should be able to demonstrate greater capacity for connecting knowledge across, and between, the physical sciences, life sciences, earth and space sciences, and engineering design. During Grade 7, students will begin to form deeper connections between concepts previously learned in grades K–6, such as collecting evidence and drawing conclusions, understanding relationships between objects, and critical thinking that leads to designing effective solutions for problems. Upon completion of Grade 7, students should have a deeper understanding of: • Physical, chemical and metabolic reactions; • Factors that affect the cycling of matter and photosynthesis; • Human impact on natural resources, and; • The dynamics of our ecosystem.Aligned Core Resources:Core resources is a local control decision.  Ensuring alignment of resources to the standards is critical for success. The CSDE has identified OpenSciEd as a highly aligned core resource after a rigorous review process. Additional Course Information: NGSS has unique features. To better understand the make-up of NGSS visit the following website for a more detailed break-down of the CT Science standards from which this curriculum was based. Nextgenscience Assessment Information:To support teachers with being able to use the OpenSciEd instructional materials, a set of professional learning resources has been developed that accompany each unit. All of the resources can be accessed by adding them to your Google Drive or by downloading into Microsoft Office documents from the Google Drive folder using the links below. To access the student and teacher versions of these units, visit the Instructional Materials Page.Additionally, the Connecticut State Department of Education has developed NGSS interim Assessment blocks specific to the grade 6-8 grade band. These can be accessed through the CSDE Website in the Performance Office tab.ELA/Math Transferable Skills Addressed in the Course: The following Practices Venn Diagram illustrates the connections and commonalities in the major content areas. This diagram attempts to cluster practices and capacities that have similar tenets and/or significant overlaps in the student expectations. Likewise, we have placed practices and capacities within the disciplinary domains if there was not a significant overlap or relationship to another discipline. One could argue certain practices/capacities could be placed in other positions within the Venn diagram. These placements are not definitive and the intention of the standards documents may not have conceptualized the three disciplinary areas In this manner. ​​ 

Subject:
Life Science
Physical Science
Space Science
Material Type:
Full Course
Provider:
CT State Department of Education
Date Added:
05/03/2022
Connecticut Model Science for Grade 8
Read the Fine Print
Educational Use
Rating
0.0 stars

OpenSciEd Demo VideoOpenSciEd Scope & Sequence VideoCSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum  The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: Using 3-Dimesional design pedagogy, Connecticut’s NGSS employ: Science/Engineering Practices, Disciplinary Core Ideas (DCI’s) and Crosscutting Concepts that are used to make up Student Expectations:Each year, students in Connecticut should be able to demonstrate greater capacity for connecting knowledge across, and between, the physical sciences, life sciences, earth and space sciences, and engineering design. During Grade 8, students will begin to form deeper connections between concepts previously learned in grades K–7, such as collecting evidence and drawing conclusions, understanding relationships between objects, and critical thinking that leads to designing effective solutions for problems. Upon completion of Grade 8, students should have a deeper understanding of: • Physical and theoretical forces and contact;• The Earth and its place in space;• Natural selection and evolution, and; • Concepts of genetics and heredity.Aligned Core Resources:Core resources is a local control decision.  Ensuring alignment of resources to the standards is critical for success. The CSDE has identified OpenSciEd as a highly aligned core resource after a rigorous review process. Additional Course Information: NGSS has unique features. To better understand the make-up of NGSS visit the following website for a more detailed break-down of the CT Science standards from which this curriculum was based. Nextgenscience Assessment Information:To support teachers with being able to use the OpenSciEd instructional materials, a set of professional learning resources has been developed that accompany each unit. All of the resources can be accessed by adding them to your Google Drive or by downloading into Microsoft Office documents from the Google Drive folder using the links below. To access the student and teacher versions of these units, visit the Instructional Materials Page.Additionally, the Connecticut State Department of Education has developed NGSS interim Assessment blocks specific to the grade 6-8 grade band. These can be accessed through the CSDE Website in the Performance Office tab.ELA/Math Transferable Skills Addressed in the Course: The following Practices Venn Diagram illustrates the connections and commonalities in the major content areas. This diagram attempts to cluster practices and capacities that have similar tenets and/or significant overlaps in the student expectations. Likewise, we have placed practices and capacities within the disciplinary domains if there was not a significant overlap or relationship to another discipline. One could argue certain practices/capacities could be placed in other positions within the Venn diagram. These placements are not definitive and the intention of the standards documents may not have conceptualized the three disciplinary areas In this manner. ​​

Subject:
Life Science
Physical Science
Space Science
Material Type:
Full Course
Provider:
CT State Department of Education
Date Added:
05/06/2022