Unit Overview/Summary:  

Summary  

The unit organizes performance expectations with a focus on helping students build understanding of traits of organisms. Instruction developed from this unit should always maintain the three-dimensional nature of the standards and recognize that instruction is not limited to the practices and concepts directly linked with any of the unit performance expectations.  

Connections between unit Disciplinary Core Ideas (DCIs)  

The idea that matter of any type can be subdivided into particles that are too small to see (PS1.A as in 5-PS1-1) connects to the idea that the amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish (PS1.A as in 5-PS1-2). The total weight of substances also does not change no matter what reaction or change in properties occurs (PS1.B as in 5-PS1-2). 

Change in properties connects to the idea that when two or more different substances are mixed, a new substance with different properties may be formed (PS1.B as in 5-PS1-4). Measurements of a variety of properties can be used to identify materials (PS1.A as in 5-PS1-3), including the new ones that may be formed when two or more substances are mixed.  

The engineering design idea that different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints (ETS1.C as in 3-5-ETS1-3) could connect to multiple science concepts, such as that when two or more different substances are mixed, a new substance with different properties may be formed (PS1.B as in 5-PS1-4), and that measurements of a variety of properties can be used to identify materials (PS1.A as in 5- PS1-3). Students can be challenged to create a new substance with particular properties (i.e., given criteria). In order to test the solution, measurements of the properties need to be taken to determine that the new substance with the desired properties has been created.  

Unit Science and Engineering Practices (SEPs)

Instruction leading to this unit of PEs will help students build toward proficiency in elements of the practices of developing and using models (5-PS1-1); planning and carrying out investigations (5-PS1-3, 5-PS1-4, and 3-5-ETS1-3); and using mathematics and computational thinking (5-PS1-2). Many other practice elements can be used in instruction.  

Unit Crosscutting Concepts (CCCs)

Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. As such, they are a way of linking the different domains of science.

Instruction leading to this unit of PEs will help students build toward proficiency in elements of the crosscutting concepts of Cause and Effect (5-PS1-4) and Scale, Proportion, and Quantity (5-PS1-1, 5-PS1-2, and 5-PS1-3). Many other crosscutting concepts elements can be used in instruction. All instruction should be three-dimensional. 

Subject:
Life Science, Physical Science, Space Science
Material Type:
Unit of Study
Level:
Upper Primary
Grade:
5
Tags: