This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Make sure you have plenty of snap cubes. * Build a rectangular prism that is 2 cubes high, 3 cubes wide, and 5 cubes long. * We will say that the volum...
CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum The CSDE believes in providing …
CSDE Model Curricula Quick Start GuideEquitable and Inclusive Curriculum The CSDE believes in providing a set of conditions where learners are repositioned at the center of curricula planning and design. Curricula, from a culturally responsive perspective, require intentional planning for diversity, equity, and inclusion in the development of units and implementation of lessons. It is critical to develop a learning environment that is relevant to and reflective of students’ social, cultural, and linguistic experiences to effectively connect their culturally and community-based knowledge to the class. Begin by connecting what is known about students’ cognitive and interdisciplinary diversity to the learning of the unit. Opposed to starting instructional planning with gaps in students’ knowledge, plan from an asset-based perspective by starting from students’ strengths. In doing so, curricula’s implementation will be grounded in instruction that engages, motivates, and supports the intellectual capacity of all students.Course Description: In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume. Upon completion of this course students will have the ability to: Write and interpret numerical expressions; Analyze patterns and relationships; Understand the place value system; Perform operations with multi-digit whole numbers and with decimals to hundredths; Use equivalent fractions as a strategy to add and subtract fractions; Apply and extend previous understandings of multiplication and division to multiply and divide fractions; Convert like measurement units within a given measurement system; Represent and interpret data; Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition; Graph points on the coordinate plane to solve real-world and mathematical problems; and Classify two-dimensional figures into categories based on their properties. Aligned Core Resources: Core resources is a local control decision. Ensuring alignment of resources to the standards is critical for success. There are tools that are available to assist in evaluating alignment, such as CCSSO’s Mathematics Curriculum Analysis Project and Student Achievement Partner’s Instructional Materials Evaluation Tool. In addition EdReports and Louisiana Believes are two sources of completed reviews for a variety of resources. Connecticut is currently working on providing additional alignment guidance for the most frequently used resources across the state. Aligned Core Programs: The CSDE in partnership with SERC has engaged with providers of high-quality vetted resources to provide additional alignment guidance to the CSDE model curriculum. High-quality instructional resources are critical for improving student outcomes. The alignment guidance is intended to clarify content and support understanding for clear implementation and coherence. Materials selection is a local control decision and these documents have been provided from participating publishers to assist districts in implementation. Use of the materials from these publishers is not required. These aligned core programs meet expectations as reported by EdReports. If your resource is not listed below, you are encouraged to review EdReports to ensure the alignment of your resource to the Connecticut Core Standards. Strong alignment of curricula and instructional materials have the potential to support student engagement of meaningful grade level content daily and teacher growth. Achievement First Math Grade 5enVisions Grade 5Eureka Grade 5Fishtank Plus Math Grade 5HMH into Math Grade 5Imagine Learning Illustrative Mathematics Grade 5i-Ready Math Grade 5MidSchoolMath Grade 5Reveal Math Grade 5Financial Literacy Connections:The State of Connecticut is committed to implementing high-quality Financial Literacy instruction at all grade levels beginning in kindergarten. Financial Literacy supports students’ academic performance in several subject areas. The K-5 Model Math Curricula embeds tasks that align the mathematical content and skill to the essential Financial Literacy concepts such as income, spending, saving, investing, credit and risk. The concepts contained in the learning tasks are designed to be rich, hands-on activities with developmentally appropriate real-world connections. The tasks are identified by grade level and embedded in the appropriate units so that students can demonstrate mastery of what they need to know and be able to do by the end of their K-5 school experience. In this way, elementary students will be prepared to build upon Financial Literacy knowledge as they advance through middle and high school.Additional Course Information: Major work of Grade 5 mathematics focuses on multiplication and division of whole numbers and fractions including concepts, skills, and problem solving. Fluencies expected for Grade 5 include: Multi-digit multiplication Habits of Mind/SEIH/Transferable Skills Addressed in the Course: The Standards for Mathematical Practice describe the thinking processes, habits of mind, and dispositions that students need to develop a deep, flexible, and enduring understanding of mathematics. They describe student behaviors, ensure an understanding of math, and focus on developing reasoning and building mathematical communication. Therefore, the following should be addressed throughout the course: Make sense of problems & persevere in solving them Reason abstractly & quantitatively Construct viable arguments & critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for & make use of structure Look for & express regularity in repeated reasoning
Students design and build model landfills using materials similar to those used …
Students design and build model landfills using materials similar to those used by engineers for full-scale landfills. Their completed small-size landfills are "rained" on and subjected to other erosion processes. The goal is to create landfills that hold the most garbage, minimize the cost to build and keep trash and contaminated water inside the landfill to prevent it from causing environmental damage. Teams create designs within given budgets, test the landfills' performance, and graph and compare designs for capacity, cost and performance.
Students learn how engineers construct buildings to withstand damage from earthquakes by …
Students learn how engineers construct buildings to withstand damage from earthquakes by building their own structures with toothpicks and marshmallows. Students test how earthquake-proof their buildings are by testing them on an earthquake simulated in a pan of Jell-O(TM).
Students will learn about the water cycle, watersheds, and specifically, the watershed …
Students will learn about the water cycle, watersheds, and specifically, the watershed that feeds Springfield, Oregon. After analyzing drought maps, reading news reports, and seeing images and videos, students will realize that drought is a real life concern. Students, as concerned citizens, will create a water collection device, at first on a small scale, and then a true to life water collection system to help re- purpose rainwater in our garden area.
In this activity students practice measuring techniques by measuring different objects and …
In this activity students practice measuring techniques by measuring different objects and distances around the classroom. They practice using different scales of measurement in metric units and estimation.
In this 25-day module, students work with two- and three-dimensional figures. Volume …
In this 25-day module, students work with two- and three-dimensional figures. Volume is introduced to students through concrete exploration of cubic units and culminates with the development of the volume formula for right rectangular prisms. The second half of the module turns to extending students understanding of two-dimensional figures. Students combine prior knowledge of area with newly acquired knowledge of fraction multiplication to determine the area of rectangular figures with fractional side lengths. They then engage in hands-on construction of two-dimensional shapes, developing a foundation for classifying the shapes by reasoning about their attributes. This module fills a gap between Grade 4s work with two-dimensional figures and Grade 6s work with volume and area.
**NOTE: The New York State Education Department shut down the EngageNY website in 2022. In order to maintain educators' access, nearly all resources have been uploaded to archive.org and the resource links above have been updated to reflect their new locations.**
Our students will be studying and exploring the human impact on groundwater. …
Our students will be studying and exploring the human impact on groundwater. They will study the water deprivation impacts both locally and in the San Joaquin Valley. Students will explore and come to understand the benefits of collecting rainwater. We partnered with the City of Eugene and had the wonderful Jackie come in. Our students brought in many of the materials including cardboard boxes, empty plastic containers (sour cream, water bottles,etc), tin foil, wax paper, duct tape,etc. We as teachers provided the underground sprinkler tubing cutting material, more tape and supplies. We tested this project with our 5th graders so we could make improvements and continue this project next year. In order to complete this project, we needed a full three weeks of working for an hour plus every day. We incorporated this project into our reading and science timeline.
Students learn the history of the waterwheel and common uses for water …
Students learn the history of the waterwheel and common uses for water turbines today. They explore kinetic energy by creating their own experimental waterwheel from a two-liter plastic bottle. They investigate the transformations of energy involved in turning the blades of a hydro-turbine into work, and experiment with how weight affects the rotational rate of the waterwheel. Students also discuss and explore the characteristics of hydroelectric plants.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.