Updating search results...

Search Resources

7 Results

View
Selected filters:
  • synaptic-plasticity
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Date Added:
07/18/2021
Biology, Animal Structure and Function, The Nervous System, How Neurons Communicate
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Describe the basis of the resting membrane potentialExplain the stages of an action potential and how action potentials are propagatedExplain the similarities and differences between chemical and electrical synapsesDescribe long-term potentiation and long-term depression

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
OpenStax College
Date Added:
07/18/2021
Cellular Neurophysiology, Spring 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Surveys the molecular and cellular mechanisms of neuronal communication. Covers ion channels in excitable membrane, synaptic transmission, and synaptic plasticity. Correlates the properties of ion channels and synaptic transmission with their physiological function such as learning and memory. Discusses the organizational principles for the formation of functional neural networks at synaptic and cellular levels.

Subject:
Anatomy/Physiology
Life Science
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Liu, Guosong
Date Added:
01/01/2002
From Molecules to Behavior:  Synaptic Neurophysiology, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Like transistors in a computer, synapses perform complex computations and connect the brain's non-linear processing elements (neurons) into a functional circuit. Understanding the role of synapses in neuronal computation is essential to understanding how the brain works. In this course students will be introduced to cutting-edge research in the field of synaptic neurophysiology. The course will cover such topics as synapse formation, synaptic function, synaptic plasticity, the roles of synapses in higher cognitive processes and how synaptic dysfunction can lead to disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chubykin, Alex
Date Added:
01/01/2010
Synaptic Plasticity and Memory, from Molecules to Behavior, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course we will discover how innovative technologies combined with profound hypotheses have given rise to our current understanding of neuroscience. We will study both new and classical primary research papers with a focus on the plasticity between synapses in a brain structure called the hippocampus, which is believed to underlie the ability to create and retrieve certain classes of memories. We will discuss the basic electrical properties of neurons and how they fire. We will see how firing properties can change with experience, and we will study the biochemical basis of these changes. We will learn how molecular biology can be used to specifically change the biochemical properties of brain circuits, and we will see how these circuits form a representation of space giving rise to complex behaviors in living animals. A special emphasis will be given to understanding why specific experiments were done and how to design experiments that will answer the questions you have about the brain. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Arts and Humanities
Biology
Life Science
Literature
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kamsler, Ariel
Date Added:
01/01/2007