Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the relationship of amplitude and frequency of a sound wave to attributes of soundTrace the path of sound through the auditory system to the site of transduction of soundIdentify the structures of the vestibular system that respond to gravity
By the end of this section, you will be able to:Identify the …
By the end of this section, you will be able to:Identify the general and special senses in humansDescribe three important steps in sensory perceptionExplain the concept of just-noticeable difference in sensory perception
By the end of this section, you will be able to:Describe four …
By the end of this section, you will be able to:Describe four important mechanoreceptors in human skinDescribe the topographical distribution of somatosensory receptors between glabrous and hairy skinExplain why the perception of pain is subjective
By the end of this section, you will be able to:Explain in …
By the end of this section, you will be able to:Explain in what way smell and taste stimuli differ from other sensory stimuliIdentify the five primary tastes that can be distinguished by humansExplain in anatomical terms why a dog’s sense of smell is more acute than a human’s
By the end of this section, you will be able to:Explain how …
By the end of this section, you will be able to:Explain how electromagnetic waves differs from sound wavesTrace the path of light through the eye to the point of the optic nerveExplain tonic activity as it is manifested in photoreceptors in the retina
Vision is the primary sense of many animals and much is known …
Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.