Student teams locate a contaminant spill in a hypothetical site by measuring …
Student teams locate a contaminant spill in a hypothetical site by measuring the pH of soil samples. Then they predict the direction of groundwater flow using mathematical modeling. They also use the engineering design process to come up with alternative treatments for the contaminated water.
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in …
Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics include: Darcy equation, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, storage properties, regional circulation, unsaturated flow, recharge, stream-aquifer interaction, well hydraulics, flow through fractured rock, numerical models, groundwater quality, contaminant transport processes, dispersion, decay, and adsorption. Includes laboratory and computer demonstrations.
Students discover how tiny microscopic plants can remove nutrients from polluted water. …
Students discover how tiny microscopic plants can remove nutrients from polluted water. They also learn how to engineer a system to remove pollutants faster and faster by changing the environment for the algae.
This activity simulates the extraction of limited, nonrenewable resources from a "mine," …
This activity simulates the extraction of limited, nonrenewable resources from a "mine," so students can experience first-hand how resource extraction becomes more difficult over time. Students gather data and graph their results to determine the peak in resource extraction. They learn about the limitations of nonrenewable resources, and how these resources are currently used.
Students review the electrical appliances used at home and estimate the energy …
Students review the electrical appliances used at home and estimate the energy used for each. The results can help to show the energy hogs that could benefit from conservation or improved efficiency.
Students complete three different activities to evaluate the energy consumption in a …
Students complete three different activities to evaluate the energy consumption in a household and explore potential ways to reduce that consumption. The focus is on conservation and energy efficient electrical devices and appliances. The lesson reinforces the relationship between power and energy and associated measurements and calculations required to evaluate energy consumption. The lesson provides the students with more concrete information for completing their culminating unit assignment.
This course is designed to provide both undergraduate and graduate students with …
This course is designed to provide both undergraduate and graduate students with a fundamental understanding of human factors that must be taken into account in the design and engineering of complex aviation and space systems. The primary focus is the derivation of human engineering design criteria from sensory, motor, and cognitive sources to include principles of displays, controls and ergonomics, manual control, the nature of human error, basic experimental design, and human-computer interaction in supervisory control settings. Undergraduate students will demonstrate proficiency through aviation accident case presentations, quizzes, homework assignments, and hands-on projects. Graduate students will complete all the undergraduate assignments; however, they are expected to complete a research-oriented project with a final written report and an oral presentation.
Students capture and examine air particles to gain an appreciation of how …
Students capture and examine air particles to gain an appreciation of how much dust, pollen and other particulate matter is present in the air around them. Students place "pollution detectors" at various locations to determine which places have a lot of particles in the air and which places do not have as many. Quantifying and describing these particles is a first step towards engineering methods of removing contaminants from the air.
In this activity, students will simulate the equal and unequal distribution of …
In this activity, students will simulate the equal and unequal distribution of our renewable resources. Also, they will consider the impact of our increasing population upon these resources and how engineers develop technologies to create resources.
Chemical engineering problems presented and analyzed in an industrial context. Emphasis on …
Chemical engineering problems presented and analyzed in an industrial context. Emphasis on the integration of fundamentals with material property estimation, process control, product development, and computer simulation. Integration of societal issues, such as engineering ethics, environmental and safety considerations, and impact of technology on society are addressed in the context of case studies.
Students are introduced to the concept of an environment and the interactions …
Students are introduced to the concept of an environment and the interactions within it through written and hands-on webbing activities. They also learn about environmental engineering careers and the roles of these engineers in our society.
Introduces students to the theory, tools, and techniques of engineering design and …
Introduces students to the theory, tools, and techniques of engineering design and creative problem-solving, as well as design issues and practices in civil engineering. Includes several design cases, with an emphasis on built facilities (e.g., buildings, bridges and roads). Project design explicitly concerns technical approaches as well as consideration of the existing built environment, natural environment, economic and social factors, and expected life span. A large design case is introduced which is used in the subsequent specialty area design subjects (1.031, 1.041, 1.051) and the capstone design subject (1.013).
In this sophomore design course, you will be challenged with three design …
In this sophomore design course, you will be challenged with three design tasks: a first concerning water resources/treatment, a second concerning structural design, and a third focusing on the conceptual (re)design of a large system, Boston's Back Bay. The first two tasks require the design, fabrication and testing of hardware. Several laboratory experiments will be carried out and lectures will be presented to introduce students to the conceptual and experimental basis for design in both domains.
Learn about urban water services, focusing on conventional technologies for drinking water …
Learn about urban water services, focusing on conventional technologies for drinking water treatment. This course focuses on conventional technologies for drinking water treatment. Unit processes, involved in the treatment chain, are discussed as well as the physical, chemical and biological processes involved. The emphasis is on the effect of treatment on water quality and the dimensions of the unit processes in the treatment chain. After the course one should be able to recognise the process units, describe their function, and make basic calculations for a preliminary design of a drinking water treatment plant.
Students in ESD.00 work on projects to address large, complex and seemingly …
Students in ESD.00 work on projects to address large, complex and seemingly intractable real-world problems, such as energy supply, environmental issues, health care delivery, and critical infrastructure (e.g., telecommunications, water supply, and transportation). The course introduces interdisciplinary approaches - rooted in engineering, management, and the social sciences - to considering these critical contemporary issues. Small, faculty-led teams select an engineering systems term project to illustrate one or more of these approaches.
Through an overview of some of the environmental challenges facing the growing …
Through an overview of some of the environmental challenges facing the growing and evolving country of China today, students learn about the effects of indoor and outdoor air pollution that China is struggling to curb with the help of engineers and scientists. This includes the sources of particulate matter 2.5 and carbon dioxide, and air pollution impacts on the health of people and the environment.
Students are presented with examples of the types of problems that environmental …
Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on air and land quality issues. Air quality topics include air pollution sources, results of poor air quality including global warming, acid rain and air pollution, as well as ways to reduce air pollution. Land quality topics include the differences between renewable and non-renewable resources, the results of non-renewable resource misuse and ways to reduce land pollution. (Water quality is introduced in a later lesson in a separate presentation, as it is the focal point of this unit curriculum.)
This course uses the basic principles of biology and earth science as …
This course uses the basic principles of biology and earth science as a context for understanding environmental policies and resource management practices. Our planet is facing unprecedented environmental challenges, from oil spills to global climate change. In ENSC 1000, you will learn about the science behind these problems; preparing you to make an informed, invaluable contribution to Earth’s future. I hope that each of you is engaged by the material presented and participates fully in the search for, acquisition of, and sharing of information within our class.
This course presents aerospace propulsive devices as systems, with functional requirements and …
This course presents aerospace propulsive devices as systems, with functional requirements and engineering and environmental limitations along with requirements and limitations that constrain design choices. Both air-breathing and rocket engines are covered, at a level which enables rational integration of the propulsive system into an overall vehicle design. Mission analysis, fundamental performance relations, and exemplary design solutions are presented.
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. …
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. It would be of interest to, as well as accessible to, students in Urban Studies and Planning, Political Science, Technology and Policy, Management, and various engineering departments. It is a good subject for those who plan to take only one subject in transportation and serves as an entry point to other transportation subjects as well. The subject focuses on fundamental principles of transportation systems, introduces transportation systems components and networks, and addresses how one invests in and operates them effectively. The tie between transportation and related systems is emphasized.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.