Updating search results...

Search Resources

10000 Results

View
Selected filters:
How Do You Store All This Data?
Read the Fine Print
Educational Use
Rating
0.0 stars

During this lesson, students start to see the data structure they will use to store their images, towards finding a solution to this unit's Grand Challenge. Students are introduced to two-dimensional arrays and vector classes. Then they are guided to see that a vector class is the most efficient way of storing the data for their images. Grand Challenge: To write a program to simulate peripheral vision by merging two images.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
How Does a Light Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn more about how light sensors work, reinforcing their similarities to the human sense of sight. They look at the light sensing process incoming light converted to electrical signals sent to the brain through the human eye anatomy as well as human-made electrical light sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and light sensors gives students a chance to investigate how light sensors function in preparation for the associated activity involving the light sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO light sensor, including its two modes of gathering data and what its numerical value readings mean. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
09/18/2014
How Does a Robot Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces electricity, batteries and motors using a LEGO® MINDSTORMS NXT® robot. The associated activity guides students to build a simple LEGO NXT set-up and see the practical implementation of the concepts discussed. Before studying the importance of electricity and how it is crucial for robot movement, students consider various electronic devices they use in their daily lives so that they have an understanding of how engineers use electricity to power such devices, including robots. The lesson starts with a brief introduction to electricity and the working of batteries. A simple electrical circuit demonstration highlights how three basic electrical devices (buzzer, LED and motor) are driven by electricity. An activity at the end further reinforces these concepts.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Kalyani Upendram
Satish Nair
Date Added:
09/18/2014
How Does a Sound Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how sound sensors work, reinforcing their similarities to the human sense of hearing. They look at the hearing process sound waves converted to electrical signals sent to the brain through human ear anatomy as well as sound sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and sound sensors gives students a chance to experiment with the sound sensors in preparation for the associated activity involving the sound sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, the unit of decibels, and details about the LEGO sound sensor, including how readings are displayed and its three modes of programming sound input. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to appreciate how robots can take sensor input and use it to make decisions to via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
09/18/2014
How Does a Touch Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how touch sensors work, while reinforcing their similarities to the human sense of touch. They look at human senses and their electronic imitators, with special focus on the nervous system, skin and touch sensors. A PowerPoint® presentation explains stimulus-to-response pathways, how touch sensors are made and work, and then gives students a chance to handle and get familiar with the LEGO touch sensor, including programming LEGO MINDSTORMS(TM) NXT robots to use touch sensor input to play music. Students take pre/post quizzes and watch a short online video. The mini-activities prepare students for the associated activity. This lesson and its associated activity enables students to appreciate how robots can take input from sensors, and use that to make decisions to move.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Trisha Chaudhary
Date Added:
09/18/2014
How Does an Ultrasonic Sensor Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how ultrasonic sensors work, reinforcing the connection between this sensor and how humans, bats and dolphins estimate distance. They learn the echolocation process sound waves transmitted, bounced back and received, with the time difference used to calculate the distance of objects. Two mini-activities, which use LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors, give students a chance to experiment with ultrasonic sensors in preparation for the associated activity. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO ultrasonic sensor. Pre/post quizzes are provided. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.

Subject:
Applied Science
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
How Effective Is Your Sunscreen?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams design and conduct quality-control experiments to test the reliability of several ultraviolet protection factors. Students use UV-detecting beads in their experimental designs to test the effectiveness of various types of sunscreens and sunblock. For example, they might examine zinc oxide nanoparticles versus traditional organic sun protection factors. UV intensity is quantitatively measured by UVA and UVB Vernier sensors, and students record and graph their results. By designing and conducting this experiment, students compare various substances, while learning about quality control.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
How Far?
Read the Fine Print
Educational Use
Rating
0.0 stars

To learn how friction affects motion, students explore how different textures provide varying amounts of friction to objects moving across them. They build a tool to measure the amount of friction between a note card and various surfaces by measuring the distance that a rubber band stretches. They experiment with a range of materials to determine which provides the least/most friction.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
How Far Does a Lava Flow Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

While learning about volcanoes, magma and lava flows, students learn about the properties of liquid movement, coming to understand viscosity and other factors that increase and decrease liquid flow. They also learn about lava composition and its risk to human settlements.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brittany Enzmann
Date Added:
09/18/2014
How Far Does the Robot Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students practice their multiplication skills using robots with wheels built from LEGO® MINDSTORMS® NXT kits. They brainstorm distance travelled by the robots without physically measuring distance and then apply their math skills to correctly calculate the distance and compare their guesses with physical measurements. Through this activity, students estimate parameters other than by physically measuring them, practice multiplication, develop measuring skills, and use their creativity to come up with successful solutions.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elina Mamasheva
Keeshan Williams
Date Added:
09/18/2014
How Fast Can a Carrot Rot?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct experiments to determine what environmental factors favor decomposition by soil microbes. They use chunks of carrots for the materials to be decomposed, and their experiments are carried out in plastic bags filled with dirt. Every few days students remove the carrots from the dirt and weigh them. Depending on the experimental conditions, after a few weeks most of the carrots have decomposed completely.

Subject:
Applied Science
Education
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
How Fast Does Water Travel through Soils?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students measure the permeability of different types of soils, compare results and realize the importance of size, voids and density in permeability response.

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Magued Iskander
Russ Holstein
Ryan Cain
Date Added:
09/18/2014
How Full Is Full?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about porosity and permeability and relate these concepts to groundwater flow. They use simple materials to conduct a porosity experiment and use the data to understand how environmental engineers decide on the placement and treatment of a drinking water well.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
How Heavy
Unrestricted Use
CC BY
Rating
0.0 stars

In this activity using a balance scale students practice weighing items to see how heavy they are. Cubes are used in the balance as units of measure so students may easily count them.

Subject:
Mathematics
Measurement and Data
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/11/2013
How High Can a Super Ball Bounce?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students determine the coefficient of restitution (or the elasticity) for super balls. Working in pairs, they drop balls from a meter height and determine how high they bounce. They measure, record and repeat the process to gather data to calculate average bounce heights and coefficients of elasticity. Then they extrapolate to determine the height the ball would bounce if dropped from much higher heights.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mark Moldwin
Date Added:
09/18/2014
How High is the Sky?
Unrestricted Use
CC BY
Rating
0.0 stars

This activity aims to teach students about the different layers of the atmosphere. It also aims to teach them which part of our atmosphere is considered outer space and what phenomena occur in each layer.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Rogel Mari Sese, Regulus Space Tech
Date Added:
07/07/2021
How Hot Is Hot? Heat versus Temperature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The aim of this lesson is to introduce the concepts of heat and temperature, which many students find confusing. During the lesson, students will be asked to explore and discuss situations where even though the same amount of heat is absorbed by several substances, the increase in temperature of the substances is different. This video lesson presents a series of stories relating to heat and temperature, beginning with a visit to a factory where gamat oil is produced. In the video, a man dips his finger into boiling gamat oil yet feels no pain. The scene will draw students’ attention and raise their curiosity about how this is possible. Students will also carry out several experiments to compare and relate the situations where the same amount of heat absorbed by substances will result in different temperatures. By the end of this lesson, students will understand the term “specific heat capacity” and will recognize the difference between a high or low specific heat capacity. They will also understand the term “thermal diffusivity” and how this relates to the topic of the lesson. This lesson offers some authentic learning experiences where students will have the opportunity to relate the concept of heat and temperature to everyday situations. It will take about 50 minutes to complete - however, you may want to divide the lesson into two classes if the activities require more time.

Subject:
Physical Science
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Mohd Zah Ismail, Mohd Suhaimi Mohd Ghazali
Date Added:
07/02/2021
How Hot Is It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
How Light Pollution Affects the Stars: Magnitude Readers
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Light pollution affects the visibility of stars. Building a simple Magnitude Reader, students determine the magnitude of stars and learn about limiting magnitude.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Provider:
International Astronomical Union
Provider Set:
astroEDU
Author:
Amee Hennig
Date Added:
07/07/2021