Updating search results...

Search Resources

53 Results

View
Selected filters:
  • Electronic Technology
Electromechanical Dynamics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity. An accompanying solutions manual for the problems in the text is provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Woodson, Herbert H.
Date Added:
01/01/2009
Electronic Instrumentation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a basic course on Instrumentation and Measurement. Firstly, the detection limit in a typical instrument for measurement of an electrical quantity is determined for: offset, finite common-mode rejection, noise and interference. The dominant source of uncertainty is identified and the equivalent input voltage/current sources are calculated. Secondly, the measurement of a non-electrical quantity is discussed. In this case the detection limit should be expressed in terms of the non-electrical input parameter of interest. Issues discussed are: (cross-)sensitivities in frequently used transduction effects, non-electrical source loading and noise in the non-electrical signal domain. Coupled domain formal modeling is subsequently introduced to facilitate analytical multi-domain system analysis. Finally, the detection limit in typical applications in the mechanical, thermal, optical and magnetic signal domain are analysed, along with circuit and system techniques to maximize overall system detectivity.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
K.A.A. Makinwa
Date Added:
02/08/2016
Electronic Power Conversion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to power electronics. First the principles of power conversion with switching circuits are treated as well as main applications of power electronics. Next the basic circuits of power electronics are explained, including ac-dc converters (diode rectifiers), dc-dc converters (non-isolated and isolated) and dc-ac converters (inverters). Related issues such as pulse width modulation, methods of analysis, voltage distortion and power quality are treated in conjunction with the basic circuits. The main principles of operation of most commonly used power semiconductor switches are explained. Finally, the role of power electronics in sustainable energy future, including renewable energy systems and energy efficiency is discussed.

Study Goals
To get acquainted with applications of power electronics, to obtain insight in the principles of power electronics, to get an overview of power electronic circuits and be able to select appropriate circuits for specific applications and finally to be able to analyse the circuits. The focus in the course is on analysis and to a lesser extent on design.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. Popovic
Date Added:
02/09/2016
Elektronische Signaalbewerking
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Na het behalen van dit vak kan de student:

filter-overdrachtsfuncties middels state-space synthese afbeelden op filter-topologieen, deze optimaliseren m.b.t. dynamisch bereik en gevoeligheid voor componenten-variaties en realiseren met behulp van integratoren;
circuits voor integratoren, analoge filters, continue-tijd filters, en nullors (operationele versterkers) ontwerpen en effecten ten gevolge van niet-ideale componenten en aliasing analyseren

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
07/14/2021
Hands-On Introduction to Electrical Engineering Lab Skills, January (IAP) 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces students to both passive and active electronic components (op-amps, 555 timers, TTL digital circuits). Basic analog and digital circuits and theory of operation are covered. The labs allow the students to master the use of electronic instruments and construct and/or solder several circuits. The labs also reinforce the concepts discussed in class with a hands-on approach and allow the students to gain significant experience with electrical instruments such as function generators, digital multimeters, oscilloscopes, logic analyzers and power supplies. In the last lab, the students build an electronic circuit that they can keep. The course is geared to freshmen and others who want an introduction to electronics circuits. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Gim Hom
Date Added:
01/01/2008
Introduction to Electronics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The advent of electronics has had a profound impact on our lives and impacted nearly every product that we use either directly or indirectly. Without electronics, present day computers, cell phones, stereos, televisions, and the internet would not be possible. And of course, without computers and modern communications tools, society could not have made the huge strides in fields such as medicine, aerospace technologies, meteorology, transportation, agriculture, education, and many others. It is for these reasons that the invention of the transistor is considered as one of the most important technological advancements in history.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Textbook
Provider:
Minnesota State Opendora
Author:
Tim Grebner
Date Added:
07/07/2021
Introduction to Nanoelectronics, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Traditionally, progress in electronics has been driven by miniaturization. But as electronic devices approach the molecular scale, classical models for device behavior must be abandoned. To prepare for the next generation of electronic devices, this class teaches the theory of current, voltage and resistance from atoms up. To describe electrons at the nanoscale, we will begin with an introduction to the principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrĺ_dinger's equation. Then we will consider the electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction will be taught beginning with ballistic transport and concluding with a derivation of Ohm's law. We will then compare ballistic to bulk MOSFETs. The class will conclude with a discussion of possible fundamental limits to computation.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Baldo, Marc
Date Added:
01/01/2010
Introduction to Radar Systems, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This set of 10 lectures (about 11+ hours in duration) was excerpted from a three-day course developed at MIT Lincoln Laboratory to provide an understanding of radar systems concepts and technologies to military officers and DoD civilians involved in radar systems development, acquisition, and related fields. That three-day program consists of a mixture of lectures, demonstrations, laboratory sessions, and tours.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
O'Donnell, Robert M.
Date Added:
01/01/2007
Introduction to the History of Technology, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to the consideration of technology as the outcome of particular technical, historical, cultural, and political efforts, especially in the United States during the 19th and 20th centuries. Topics include industrialization of production and consumption, development of engineering professions, the emergence of management and its role in shaping technological forms, the technological construction of gender roles, and the relationship between humans and machines.

Subject:
Arts and Humanities
Career and Technical Education
Electronic Technology
Manufacturing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mindell, David
Date Added:
01/01/2006
Introductory Analog Electronics Laboratory, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introductory experimental laboratory explores the design, construction, and debugging of analog electronic circuits. Lectures and six laboratory projects investigate the performance characteristics of diodes, transistors, JFETs and op-amps, including the construction of a small audio amplifier and preamplifier. Seven weeks are devoted to the design and implementation of a project in an environment similar to that of engineering design teams in industry. Provides opportunity to simulate real-world problems and solutions that involve tradeoffs and the use of engineering judgment.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Roscoe, Byron
Date Added:
01/01/2007
Laboratory Manual for Semiconductor Devices: Theory and Application
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is the companion laboratory manual to the OER text Semiconductor Devices: Theory and Application. Coverage begins at basic semiconductor devices (signal diodes, LEDs, Zeners, etc.) and proceeds through bipolar and field effect devices. Applications include rectifiers, clippers, clampers, AC to DC power supplies, small and large signal class A amplifiers, followers, class B amplifiers, ohmic region FET applications, etc.
Mirror site: http://www.dissidents.com/resources/LaboratoryManualForSemiconductorDevices.pdf

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Textbook
Provider:
Mohawk Valley Community College
Author:
James Fiore
Date Added:
02/01/2017
Lineaire Schakelingen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Dit vak gaat over het berekenen van spanningen, stromen en vermogens in elektrische circuits met bronnen, weerstanden, spoelen en condensatoren. In het eerste deel worden de componenten geïntroduceerd en de basisberekeningsmethoden aangeleerd. In het tweede deel worden de technieken uit het eerste deel toegepast op tweede-orde circuits, circuits met sinusvormige spanningen en stromen, magnetisch gekoppelde circuits en vermogenscircuits. Verder is er veel aandacht voor filters, frequentieresponsies, tweepoorten en de Laplace transformatie

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
07/14/2021
Methods and algorithms for system design
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

System design is the central topic of this course. We move beyond the methods developed in circuit design (although we shall have interest in those) and consider situations in which the functional behavior of a system is the first object under consideration.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Assessment
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
T.G.R.M. van Leuken
Date Added:
07/14/2021
Microelectronic Devices and Circuits, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.012 is the header course for the department's Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fonstad Jr, Clifton
Date Added:
01/01/2009
Microelectronic Devices and Circuits, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.012 is the header course for the department's Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hoyt, Judy
Kong, Jing
Sodini, Charles
del Alamo, Jes
Date Added:
01/01/2009
Modeling and Simulation of Dynamic Systems, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mathematical modeling of complex engineering systems at a level of detail compatible with the design and implementation of modern control systems. Wave-like and diffusive energy transmission systems. Multiport energy storing fields and dissipative fields; consequences of symmetry and asymmetry. Nonlinear mechanics and canonical transformation theory. Examples will include mechanisms, electromechanical transducers, electronic systems, fluid systems, thermal systems, compressible flow processes, chemical processes. This course models multi-domain engineering systems at a level of detail suitable for design and control system implementation. Topics include network representation, state-space models; multi-port energy storage and dissipation, Legendre transforms; nonlinear mechanics, transformation theory, Lagrangian and Hamiltonian forms; and control-relevant properties. Application examples may include electro-mechanical transducers, mechanisms, electronics, fluid and thermal systems, compressible flow, chemical processes, diffusion, and wave transmission.

Subject:
Career and Technical Education
Electronic Technology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hogan, Neville
Date Added:
01/01/2006
Music and Technology: Live Electronics Performance Practices, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a creative, hands-on exploration of contemporary and historical approaches to live electronics performance and improvisation, including basic analog instrument design, computer synthesis programming, and hardware and software interface design.

Subject:
Arts and Humanities
Career and Technical Education
Electronic Technology
Performing Arts
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ariza, Christopher
Date Added:
01/01/2011
Ohm's Law
Unrestricted Use
CC BY
Rating
0.0 stars

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Interactive
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Date Added:
11/16/2007
Photovoltaic Solar Energy Systems, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bucciarelli, Louis
Date Added:
01/01/2004
Practical Electronics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bales, James
Date Added:
01/01/2004