Students explore the causes and effects of the Earth's ozone holes through …
Students explore the causes and effects of the Earth's ozone holes through discussion and an interactive simulation. In an associated literacy activity, students learn how to tell a story in order to make a complex topic (such as global warming or ozone holes) easier for a reader to grasp.
Students are introduced to acids and bases, and the environmental problem of …
Students are introduced to acids and bases, and the environmental problem of acid rain. They explore ways to use indicators to distinguish between acids and bases. Students also conduct a simple experiment to model and discuss the harmful effects of acid rain on our living and non-living environment, as well as how engineers address acid rain. In an associated literacy activity, students learn how persuasive techniques are used to develop an argument, and create an environmental case study.
This lesson will allow students to explore an important role of environmental …
This lesson will allow students to explore an important role of environmental engineers: cleaning the environment. Students will learn details about the Exxon Valdez oil spill, which was one of the most publicized and studied environmental tragedies in history. In the accompanying activity, they will try many "engineered" strategies to clean up their own manufactured oil spill and learn the difficulties of dealing with oil released into our waters.
Looking at models and maps, students explore different pathways and consequences of …
Looking at models and maps, students explore different pathways and consequences of pollutant transport via the weather and water cycles. In an associated literacy activity, students develop skills of observation, recording and reporting as they follow the weather forecast and produce their own weather report for the class.
Students are introduced to the fabulous planet on which they live. Even …
Students are introduced to the fabulous planet on which they live. Even though we spend our entire lives on Earth, we still do not always understand how it fits into the rest of the solar system. Students learn about the Earth's position in the solar system and what makes it unique. They learn how engineers study human interactions with the Earth and design technologies and systems to monitor, use and care for our planet's resources wisely to preserve life on Earth.
From drinking fountains at playgrounds, water systems in homes, and working bathrooms …
From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.
What do plants need? Students examine the effects of light and air …
What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of moisture to the atmosphere by plants.
Students gain an understanding of the parts of a plant, plant types …
Students gain an understanding of the parts of a plant, plant types and how they produce their own food from sunlight through photosynthesis. They also learn about transpiration, the process by which plants release moisture to the atmosphere. With this understanding, students test the effects of photosynthesis and transpiration by growing a plant from seed. They learn how plants play an important part in maintaining a balanced environment in which the living organisms of the Earth survive. This lesson is part of a series of six lessons in which students use their evolving understanding of various environments and the engineering design process, to design and create their own model biodome ecosystems.
Students are introduced to the growing worldwide environmental problems that stem from …
Students are introduced to the growing worldwide environmental problems that stem from plastic waste. What they learn about microplastics and the typical components of the U.S. water treatment process prepares them to conduct three engaging associated activities. During the lesson, students become more aware of the pervasiveness and value of plastic as well as the downstream pollution and health dangers. They learn how plastic materials don’t go away, but become microplastic pollution that accumulates in water resources as well as human and other animal bodies. They examine their own plastic use, focusing on what they discard daily, and think about better ways to produce or package those items to eliminate or reduce their likelihood of ending up as microplastic pollution. A concluding writing assignment reveals their depth of comprehension. The lesson is enhanced by arranging for a local water treatment plant representative to visit the class for Qs and As. In three associated activities, students design/test microplastic particle filtering methods for commercial products, create mini wastewater treatment plant working models that remove waste and reclaim resources from simulated wastewater, and design experiments to identify the impact of microplastics on micro-invertebrates.
To develop an understanding of modern industrial technologies that clean up and …
To develop an understanding of modern industrial technologies that clean up and prevent air pollution, students build and observe a variety of simple models of engineering pollutant recovery methods: scrubber, electrostatic precipitator, cyclone and baghouse. In an associated literacy activity, students become more aware of global environmental problems and play a part in their solution by writing environmental action campaign letters.
Students learn about population density within environments and ecosystems. They determine the …
Students learn about population density within environments and ecosystems. They determine the density of a population and think about why population density and distribution information is useful to engineers for city planning and design as well as for resource allocation.
A framework of public hygiene and epidemiology is given. Human pathology related …
A framework of public hygiene and epidemiology is given. Human pathology related to water and sanitation is dealt with, as well as the relation between health and society and environment.
Why do we care about air? Breathe in, breathe out, breathe in... …
Why do we care about air? Breathe in, breathe out, breathe in... most, if not all, humans do this automatically. Do we really know what is in the air we breathe? In this activity, students use M&M(TM) candies to create pie graphs that show their understanding of the composition of air. They discuss why knowing this information is important to engineers and how engineers use this information to improve technology to better care for our planet.
For the last century, precepts of scientific management and administrative rationality have …
For the last century, precepts of scientific management and administrative rationality have concentrated power in the hands of technical specialists, which in recent decades has contributed to widespread disenfranchisement and discontent among stakeholders in natural resources cases. In this seminar we examine the limitations of scientific management as a model both for governance and for gathering and using information, and describe alternative methods for informing and organizing decision-making processes. We feature cases involving large carnivores in the West (mountain lions and grizzly bears), Northeast coastal fisheries, and adaptive management of the Colorado River. There will be nightly readings and a short written assignment.
This course examines joint fact-finding within the context of adaptive and ecosystem-based …
This course examines joint fact-finding within the context of adaptive and ecosystem-based management. Challenges and obstacles to collaborative approaches for deciding environmental and natural resource policy and the institutional changes within federal agencies necessary to utilize joint fact-finding as a means to link science and societal decisions are discussed and reviewed with scientists and managers. Senior-level federal policymakers participate
Through this activity, students come to understand the environmental design considerations required …
Through this activity, students come to understand the environmental design considerations required when generating electricity. The electric power that we use every day at home and work is usually generated by a variety of power plants. Power plants are engineered to utilize the conversion of one form of energy to another. The main components of a power plant are an input source of energy that is used to turn large turbines, and a method to convert the turbine rotation into electricity. The input sources of energy include fossil fuels (coal, natural gas and oil), wind, water, nuclear materials and refuse. This activity focuses on how much energy can be converted to electricity from many of these input sources. It also considers the impact of the by-products associated with using these natural resources, and looks at electricity requirements. To do this, students research and evaluate the electricity needs of their community, the available local resources for generating electricity, and the impact of using those resources.
Students employ the full engineering design process to research and design prototypes …
Students employ the full engineering design process to research and design prototypes that could be used to solve the loss of sea turtle life during a hurricane. During Hurricane Irma, Florida lost a large proportion of its sea turtle nests. Protecting these nests from natural disasters or even human influence is an essential component of conservation in Florida, since only one hatchling in every thousand survives to adulthood. In this activity, students learn about sea turtle nesting behaviors and environmental impacts of hurricanes. Students work collaboratively to build structures that could protect a single sea turtle nest, or an entire beach, in the event of a hurricane or other similar weather disaster. Then, students present their solutions to concerned stakeholders. As an optional extension, students can build prototypes using 3D printers or 3D pens.
Examines different types of historical writing: political, social, cultural, demographic, biographical, and …
Examines different types of historical writing: political, social, cultural, demographic, biographical, and comparative. Includes discussion of historical films, fiction, memoirs, and conventional history. Particular attention given to works which have broken new ground in terms of their methodology and approach. Required writing includes brief weekly response papers and a substantial research paper (including proposal, first draft, and final draft), in conjunction with a formal oral presentation. Weekly discussion of readings include periodic student-led discussion and/or presentations. Open to all students, but required of history majors and minors in junior year. This course is designed to acquaint students with a variety of approaches to the past used by historians writing in the twentieth century. The books we read have all made significant contributions to their respective sub-fields and have been selected to give as wide a coverage in both field and methodology as possible in one semester's worth of reading. We examine how historians conceive of their object of study, how they use primary sources as a basis for their accounts, how they structure the narrative and analytic discussion of their topic, and what are the advantages and drawbacks of their various approaches.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.